# $\beta$-Lactamase-Stable Penicillins. Synthesis and Structure-Activity Relationships of (Z)-Alkyloxyimino Penicillins; Selection of BRL $44154{ }^{1}$ 

Pamela Brown, Stephen H. Calvert, Pauline C. A. Chapman, Suzanne C. Cosham, A. John Eglington,* Richard L. Elliot,* Michael A. Harris, Jeremy D. Hinks, John Lowther, David J. Merrikin, Michael J. Pearson, Roger J. Ponsford and John V. Syms<br>SmithKline Beecham Pharmaceuticals, Research Division, Brockham Park, Betchworth, Surrey RH3 7AJ, UK


#### Abstract

A series of (Z)-2-alkyloxyimino-2-(2-aminothiazol-4-yl)acetamidopenicillins has been prepared. New methodology has been developed to prepare tertiary alkyl oximes. High stability to $\beta$-lactamases and potent antibacterial activity have been achieved against Gram-positive and certain Gram-negative organisms. Activity against methicillin-resistant Staphylococcus aureus was an unexpected finding. The cyclopentyl analogue 4f, BRL 44154, has been selected for further study.


Over the last three decades penicillins have proved to be highly effective in the treatment of a wide range of antibacterial infections. They are, however, becoming increasingly susceptible to inactivation by $\beta$-lactamase enzymes produced by some organisms. The usefulness of amoxycillin 1 has been improved by combination with the $\beta$-lactamase inhibitor clavulanic acid. Good stability to staphylococcal $\beta$-lactamase has been achieved in the sterically hindered isoxazolyl penicillins, ${ }^{2}$ e.g., flucloxacillin, 2, but while these have potent activity against Grampositive organisms, activity against Gram-negative organisms is much reduced. The combination of a cephem nucleus and a 2 -aminothiazol-4-yl-2-[( $Z$ )-methoxyimino]acetamido sidechain found in the more recent generations of cephalosporins, ${ }^{3}$ e.g., cefotaxime, 3 leads to a combination of broad-spectrum activity and $\beta$-lactamase stability. However, activity against Gram-positive organisms is only moderate. Our objective in this study was to identify a penicillin with high activity against Staphylococci, in particular, and other pathogens commonly encountered in community-acquired infections; but with enhanced stability to bacterial $\beta$-lactamases.

The methoxyimine derivative $4 \mathbf{a}^{4}$ was not particularly active against Staphylococci and lacked the required stability to $\beta$-lactamase. We examined the effect of bulkier oxyimino substituents and this paper describes a series of 2-[( $Z$ )-alkoxy-imino]-2-(2-aminothiazol-4-yl)acetamido penicillins (Table 1). After the completion of our work Mandel and co-workers reported compounds $\mathbf{4 b}, \mathbf{4 c}, 4 \mathrm{f}$ and $\mathbf{4 g}{ }^{\mathbf{5}}{ }^{\mathbf{5}}$

## Results and Discussion

Chemistry.-The synthesis of these penicillins is dependent upon the derivatisation of a free oxyimino substituent. It was found that cyclopentyl bromide reacted readily with the 2-aminothiazol-4-yloxime 8 or its $N$-trityl derivative 9. In contrast the less reactive cyclohexyl to cyclooctyl halides only reacted efficiently with ethyl ( $Z$ )-2-hydroxyimino-3-oxobutyrate $5 .{ }^{6}$ Acid-catalysed bromination of ester 6 to bromo ester 7 followed by cyclisation with thiourea gave the aminothiazole esters 10. Alkaline hydrolysis gave the acids 11 (Scheme 1). The ( $E$ )-isomers (typically $<5 \%$ ) were readily freed from the required $(Z)$-isomers by chromatography.

Reaction of cyclobutyl bromide with oxime 8 has been reported to give the cyclobutyl oxime 10e; ${ }^{7}$ but in our hands a mixture of isomers $10 \mathrm{e}, 10 \mathrm{~s}$ and 10 t in the proportions $4: 1: 1$ was obtained, which could not be separated efficiently by chromatography. This necessitated an alternative approach. The Mitsunobu condensation ${ }^{8.9}$ between $N$-hydroxyphthalimide 16 and cyclobutanol gave compound 17 essentially free from isomers. Treatment of compound 17 with hydrazine hydrate gave $O$-cyclobutylhydroxylamine 18 , which was condensed with the protected glyoxylic acid $\mathbf{1 5}$ to give the cyclobutyl oxime 19 (Scheme 2). The chloroacetyl group was readily removed from the derived penicillin 20 by treatment with sodium $N$ methyldithiocarbamate. ${ }^{10} \mathrm{~A}$ one-pot chloroacetylation of ethyl 2-aminothiazol-4-ylglyoxylate 13 in dimethylacetamide (DMA) in the absence of added base, followed by rapid alkaline


1


3


2


4
R defined in Table 1

Table 1 Comparative antibacterial activities, $\beta$-lactamase stability and serum binding of alkoxyiminopenicillins

| R |  |  | Me | Et | $\operatorname{Pr}^{\text {i }}$ | $\xi$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | 1 | 2 | 4a | 4b | 4 c | 4 d | 4 e | 4 f | 4g | 4h |
| Organism |  |  |  |  |  |  |  |  |  |  |
| S. aureus Oxford | 0.12 | 0.25 | 1.0 | 0.5 | 0.5 | 0.5 | 1.0 | 0.25 | 0.25 | 0.25 |
| S. aureus MB9* | $>64$ | 1.0 | 8.0 | 8.0 | 2.0 | 4.0 | 2.0 | 0.5 | 0.5 | 0.25 |
| S. aureus V573** | $>64$ | $>64$ | 128 | 32 | 8.0 | 8.0 | 16 | 2.0 | 4.0 | 4.0 |
| S. epidermidis PHLN20 | $>64$ | 0.25 | 2.0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.25 | 0.25 |
| S. pneumoniae 1761 | $\leqslant 0.03$ | 0.12 | $\leqslant 0.06$ | $\leqslant 0.06$ | $\leqslant 0.03$ |
| H. influenzae NEMC1* | 32 | 4.0 | 32 | 2.0 | 0.25 | 1.0 | 1.0 | 0.25 | 0.5 | 0.5 |
| B. catarrhalis Ravasio* | 8.0 | 8.0 | 32 | 2.0 | 2.0 | 8.0 | 2.0 | 0.5 | 0.5 | 0.25 |
| E. coli NCTC 1048 | 4.0 | $>64$ | 4.0 | 2.0 | 2.0 | 1.0 | 2.0 | 2.0 | 8.0 | 8.0 |
| P. mirabilis C977 | 2.0 | $>64$ | 2.0 | 1.0 | 4.0 | 2.0 | 2.0 | 4.0 | 16 | 16 |
| Stability to $\beta$-lactamases ( $t_{\frac{1}{2}} / \mathrm{min}$ ) |  |  |  |  |  |  |  |  |  |  |
| S. aureus MB9 | <1 | 60 | 3.3 | ND | 35 | 7.7 | 27 | 86 | 93.5 | 94 |
| H. Influenzae NEMC1 | ND | ND | 0.6 | ND | ND | ND | ND | 31 | ND | ND |
| Human serum binding (\%) | 20 | 95 | 38 | ND | 62 | 35 | 58 | 60 | 66.5 | 84 |



* $\beta$-Lactamase-producing strain. ** Methicillin-resistant strain. nd Not determined.
hydrolysis during extraction, obviated the need to isolate the ester $14,{ }^{11}$ which was found to have irritant and sternutatory properties.
Apart from $O$-t-butyl oximes, readily available from condensation of carbonyl compounds with $O$-t-butylhydroxylamine, ${ }^{12}$ and oximes derived from and related to dimethylacetic acid, ${ }^{13}$ very little literature precedent could be found for the synthesis of $O$-tertiary alkyl oximes, so new methodology was developed.
An old method ${ }^{14}$ for the alkylation of aldoximes with methyl iodide utilised silver oxide, and so for initial investigation the use of a silver salt seemed to be appropriate. Therefore, reaction of the oxime 5 and t -butyl bromide in 1,4-dioxane with silver carbonate gave the desired $O$-t-butyl oxime $\mathbf{6 k}$ in good yield. It was subsequently found that silver trifluoromethanesulphonate gave a more rapid reaction, as exemplified by the synthesis of the 1 -methylcyclopentyl derivative $\mathbf{6 n}$.

Problems associated with this methodology were the use of expensive reagents and long reaction times, even with silver trifluoromethanesulphonate. With a view to scale-up, an alternative alkylation procedure was sought. We believed that the tertiary alcohol could be used to generate a carbonium ion
which could be intercepted by the oxime to give the $O$-tertiary alkyl oxime. This avoided the need to form the bromo derivative from the alcohol. Thus the oxime 5 and t -butyl alcohol were treated with some Lewis acids in refluxing methylene dichloride containing molecular sieves. Boron trifluoride-diethyl ether was the most effective and gave a high yield of the oxime $\mathbf{6 k}$, obtained as a separable mixture of ( $Z$ )- and ( $E$ )-isomer together with compound $6 \mathbf{u}$ in 10:1:1 proportions. This new methodology was applied to the synthesis of the 1-methylcyclobutyl analogue $\mathbf{6 m}$.
The 1-methylcyclopropyl oxime 61 was prepared starting from 2-bromopropionyl chloride 21 (Scherne 3); $\mathrm{LiAlH}_{4}$ reduction to the alcohol, followed by protection as the $t$ butyldimethylsilyl ether gave compound 22, which alkylated the ketooxime 5 to give ester 23. Direct cleavage of the silyl ether with triphenylphosphine dibromide ${ }^{15}$ yielded the 3 -bromo-propan-2-yl oxime 24 . Acetalisation to compound 26 followed by elimination formed the isopropenyl oxime 28, which was cyclopropanated $\left(\mathrm{Et}_{2} \mathrm{Zn}, \mathrm{CH}_{2} \mathrm{I}_{2}\right)^{16}$ to give the desired cyclopropane 30. Deprotection of the ketone [trifluoroacetic acid (TFA)-aq. tetrahydrofuran (THF)] gave the oxyimino


Scheme 1 Reagents and conditions: 1, See text; ii, $\mathrm{Br}_{2}, \mathrm{CCl}_{4}, \mathrm{HBr}-\mathrm{AcOH} ; \mathrm{iii},\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CS}, \mathrm{PhNMe}_{2}, \mathrm{EtOH} ;$ iv, $\left(\mathrm{R}=\mathrm{Ph}_{3} \mathrm{C}\right)$ aq. $\mathrm{HCO} 2 \mathrm{H} ; \mathrm{v}$, aq. NaOH , EtOH ; vi, 2,2'-dithiodipyridine, $\mathrm{PPh}_{3}, \mathrm{MeCN}$; vii, 6-APA, TMSCl, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; viii, $\mathrm{MeSO}_{2} \mathrm{Cl}, \mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NEt}$, DMF; or $\mathrm{Na}^{+}$salt, $\mathrm{MeSO} \mathbf{2 l}_{2} \mathrm{Cl}, \mathrm{DMF}$; then 6-APA, aq. $\mathrm{NEt}_{3}$


$$
\begin{aligned}
& { }^{1} C_{13}^{13} R^{1}=H, R^{2}=E t \\
& 14 R^{1}=C l C H_{2} C O, R^{2}=E t \\
& 15 R^{1}=C l C H_{2} \mathrm{CO}, R^{2}=H
\end{aligned}
$$



Scheme 2 Reagents and conditions: i, $\mathrm{ClCH}_{2} \mathbf{C O C l}, \mathrm{DMA} ; ~ i i, ~ a q . ~$ $\mathrm{NaOH}, \mathrm{EtOAc}$; iii, $\stackrel{\mathrm{CH}}{2}^{\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHOH}, \mathrm{PPh}_{3}, \mathrm{DEAD}, \mathrm{THF} \text {; iv, }}$ $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ v, aq. THF, pH 5; vi, $\mathrm{MeSO}_{2} \mathrm{Cl}, \mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NEt}$, DMF; then 6-APA, aq. $\mathrm{NEt}_{3}$; vii, $\mathrm{NaSC}(\mathrm{S}) \mathrm{NHMe}$, aq. THF
ketone 61. The unsubstituted cyclopropane derivative ${ }^{17} \mathbf{6 d}$ was prepared from ethylene dibromide using a parallel procedure.

6-Aminopenicillanic acid (6-APA) was acylated without the need for protection of the 2 -aminothiazole group. Our initial method involved the preparation of the pyridyl thioesters $\mathbf{1 2}$ from the acids 11 and their subsequent reaction with the $\mathrm{N}, \mathrm{O}-$ bis(trimethylsilyl) derivative of 6-APA. Latterly we found that activation of the acids 11 , or their sodium salts, as the mixed methanesulphonic anhydrides and subsequent reaction with 6-APA itself was more expedient (Scheme 1). The penicillin derivatives 4a-r were isolated as their sodium salts.

Structure-Activity Relationships.-The in vitro activities of penicillins 4a-r (Table 1) against a range of clinically important aerobic bacteria were determined as minimum inhibitory concentration (MIC) values by serial dilution in agar. The data for amoxycillin 1 and flucloxacillin 2 are included for comparison. In general, increasing the size of the alkyl group resulted in increased activity against the Gram-positive bacteria and the other common respiratory pathogens Haemophilus influenzae and Branhamella catarrhalis. Activity against other Gramnegative organisms Escherichia coli and Proteus mirabilis, was only moderate and the MICs in general increased with increasing lipophilicity of the substituent. Activity against the $\beta$ -lactamase-producing organisms is significantly increased as the steric bulk is increased. This was confirmed by an increase in the half-lives of the penicillins against cell-free preparations of $\beta$-lactamases from Staphylococcus aureus MB9 and the Gram-negative $H$. infuenzae NEMC1. With the latter organism a secondary effect, presumed to be increasing lipophilicity, reduced activity, as the substituent became very large. Activity against the methicillin-resistant $S$. aureus V573 (MRSA) was an unexpected finding; this was most pronounced in the cyclopentyl and cyclohexyl examples $\mathbf{4 f}$ and $\mathbf{4 g}$. This improved activity has been attributed to an increased affinity for the altered target site in the cell wall. ${ }^{18}$ Introduction of a methylene group 4 j dramatically reduced the stability to $\beta$-lactamase. The corresponding $(E)$-isomers in all cases, although retaining


Scheme 3 Reagents and conditions: i, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; ii, $\mathrm{Bu}^{\mathrm{M}} \mathrm{Me}_{2} \mathrm{SiCl}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMSO; iv, $\mathrm{Ph}_{3} \mathrm{P} \cdot \mathrm{Br}_{2}$, $\mathrm{CHCl}_{3}$, reflux; v, $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$; vi, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, PTSA, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux; vii, $\mathrm{KOBu}^{\mathbf{1}}$, THF, DMSO; viii, $\mathrm{Et}_{2} \mathrm{Zn}, \mathrm{CH}_{2} \mathrm{I}_{2}$, cyclohexane, $\mathrm{C}_{6} \mathrm{H}_{6}$; ix, TFA, aq. THF
antibacterial activity, lost stability to $\beta$-lactamase. Greater binding to human serum protein was observed with increasing lipophilicity of the oxime substituent.

While the tertiary alkyl oximes showed the greatest stability to $\beta$-lactamases, the optimum compound for antibacterial activity as measured in terms of breadth of spectrum, degree of potency and activity against MRSA was the cyclopentyl oxime 4f BRL 44154.

## Experimental

M.p.s were determined on a Kofler hot-stage apparatus and are uncorrected. IR spectra were recorded on Perkin-Elmer 197 or 983 spectrophotometers. Proton NMR spectra were recorded on Varian EM $360(60 \mathrm{MHz})$, Perkin-Elmer R $32(90 \mathrm{MHz}$ ) or Bruker AM $250(250 \mathrm{MHz})$ spectrometers. Chemical shifts are quoted in ppm relative to tetramethylsilane as internal reference for solutions in $\mathrm{CDCl}_{3}$ or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ and external HOD set at $\delta 4.80$ for solutions in $\mathrm{D}_{2} \mathrm{O}$. $J$-values are in Hz . Mass spectra, electron impact (EI), chemical ionisation (CI) using ammonia and fast-atom bombardment (FAB) using thioglycerol, were obtained on VG 7070F or VG ZAB 1F mass spectrometers. Microanalytical data were determined on a Carlo Erba 1106 elemental analyser. pH Determinations were made using a pH meter with a combination electrode. Organic extracts were dried over anhydrous magnesium sulphate, and evaporation
refers to removal of solvents on a rotary evaporator under reduced pressure. Column chromatography was performed on Merck Silica gel 60 (9385) and (7729) using mixtures of ethyl acetate and hexane as eluents, columns were packed and eluted under pressure. Sodium salts of penicillins were purified on Mitsubishi Diaion HP20SS using mixtures of water and THF as eluents and HPLC monitoring. HPLC was performed on a Waters Associates system using a $\mu$-Bondapak ${ }^{\text {TM }} \mathrm{C}_{18}$ column and eluting with mixtures of acetonitrile and $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium acetate in water at pH 5.0 . Detection was at 240 nm with a Cecil Instruments CE 212 monitor. The penicillins, although pure by HPLC contain a small amount of water as freeze-dried solids. The methyl, ethyl and isopropyl oxyiminopenicillins $4 \mathbf{a},{ }^{4}$ $4 b^{5}$ and $4 c^{5}$ have been reported and were prepared using standard methodology.

Ethyl (Z)-2-Hydroxyimino-3-oxybutyrate 5. ${ }^{6}$-A solution of sodium nitrite ( $187 \mathrm{~g}, 2.71 \mathrm{~mol}$ ) in water $\left(420 \mathrm{~cm}^{3}\right)$ was added dropwise to a mixture of ethyl acetoacetate ( $303 \mathrm{~cm}^{3}, 2.38 \mathrm{~mol}$ ) and acetic acid ( $350 \mathrm{~cm}^{3}$ ) with the temperature maintained below $0^{\circ} \mathrm{C}$. On completion of the addition the mixture was allowed to warm to room temperature during 1 h . Water ( 1500 $\mathrm{cm}^{3}$ ) was added and the mixture was stirred for a further 1 h , then extracted with diethyl ether ( $3 \times 400 \mathrm{~cm}^{3}$ ). Water ( 800 $\mathrm{cm}^{3}$ ) was added to the combined extracts and the mixture was neutralised by the addition of solid sodium hydrogen carbonate. The organic phase was washed successively with water and brine, dried and evaporated. The residual oil, which solidified on storage was washed with hexane and dried under reduced pressure over phosphorus pentaoxide to give ethyl ( $Z$ )-2-hydroxyimino-3-oxobutyrate 5 ( $342.9 \mathrm{~g}, 91 \%$ ).

Alkylation of Ethyl 2-Hydroxyimino-3-oxobutyrate 5.-Ethyl (Z)-2-cyclohexyloxyimino-3-oxobutyrate $\mathbf{6 g}$. Cyclohexyl bromide ( $55 \mathrm{~g}, 0.34 \mathrm{~mol}$ ) was added to a mixture of oxime $5(35.8 \mathrm{~g}$, 0.225 mol ), potassium carbonate ( $40.4,0.293 \mathrm{~mol}$ ) and dimethyl sulphoxide (DMSO) ( $30 \mathrm{~cm}^{3}$ ). This mixture was stirred for 16 h at room temperature, then poured into water and extracted with ethyl acetate. The organic phase was washed successively with water and brine, dried and evaporated. The residue was purified by chromatography to give the product $\mathbf{6 g}$ as an oil ( $34 \mathrm{~g}, 63 \%$ ), $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1745$ and $1695 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.32(3 \mathrm{H}, \mathrm{t}, J 7$, $M e \mathrm{CH}_{2}$ ), $1.3-2.0\left(10 \mathrm{H}, \mathrm{m}\right.$, cyclohexyl $\left.\mathrm{CH}_{2}\right), 2.37(3 \mathrm{H}, \mathrm{s}$, MeCO ) and $4.33\left(3 \mathrm{H}, \mathrm{q}+\mathrm{m}, \mathrm{MeCH}_{2}, \mathrm{CH}\right) ; m / z(\mathrm{Cl}) 242$ $\left(\mathrm{MH}^{+}\right)$.
The cycloheptyl 6 h and cyclooctyl 6i oximes were similarly prepared from oxime 5 and cycloheptyl bromide and cyclooctyl iodide, respectively:

Ethyl (Z)-2-cycloheptyloxyimino-3-oxobutyrate $6 \mathbf{h}$. This was an oil ( $80 \%$ ) (Found: $\mathrm{MH}^{+}$, 256.1547. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{4}$ requires $m / z, 256.1550) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1750$ and $1690 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.31$ ( $3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{MeCH} 2$ ) $, 1.4-2.0\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $4.32\left(3 \mathrm{H}, \mathrm{q}+\mathrm{m}, \mathrm{MeCH}_{2}, \mathrm{CH}\right)$.

Ethyl (Z)-2-cyclooctyloxyimino-3-oxobutyrate 6i. This was an oil $(69 \%) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1740$ and $1695 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.31$ ( 3 $\left.\mathrm{H}, \mathrm{t}, J 7, \mathrm{Me} \mathrm{CH}_{2}\right), 1.4-2.0\left(14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.38(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeCO}), 4.33(2 \mathrm{H}, \mathrm{q} \mathrm{MeCH} 2)$ and $4.4(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}) ; m / z(\mathrm{CI})$ $270\left(\mathrm{MH}^{+}\right)$.

Preparation of Tertiary Alkyl Oximes using Silver Salts.Ethyl (Z)-2-(t-Butoxyimino)-3-oxobutyrate 6k. Ethyl (Z)-2-hydroxyimino-3-oxobutyrate $5(4.77 \mathrm{~g}, 30 \mathrm{mmol})$ in 1,4 -dioxane ( $15 \mathrm{~cm}^{3}$ ) was treated with silver( I ) carbonate ( $8.27 \mathrm{~g}, 33 \mathrm{mmol}$ ), followed by t-butyl bromide ( $3.37 \mathrm{~cm}^{3}, 4.11 \mathrm{~g}, 30 \mathrm{mmol}$ ). The mixture was stirred in the dark and further quantities of silver( I ) carbonate ( 8.27 g ) and ( 4.14 g ), t-butyl bromide ( $6.74 \mathrm{~cm}^{3}$ ) and ( $3.7 \mathrm{~cm}^{3}$ ) and 1,4-dioxane ( $10 \mathrm{~cm}^{3}$ ) and ( $10 \mathrm{~cm}^{3}$ ) were added after 5 and 64 h , respectively. After 66.5 h more t -butyl bromide
( $3.7 \mathrm{~cm}^{3}$ ) was added and the mixture was stirred in the dark for a further 3.5 h . The mixture was filtered through Celite, and the filter cake was washed well with 1,4-dioxane. The filtrate and washings were combined and concentrated. Purification by chromatography gave the alkyl oxime $6 \mathrm{k}(4.5 \mathrm{~g}, 70 \%$ ) as an oil, $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1745,1690,1365,1230,1180,1070$ and 990; $\delta\left(\mathrm{CDCl}_{3}\right) 1.36\left(12 \mathrm{H}, \mathrm{s}\right.$, superimposed on $\left.\mathrm{t}, \mathrm{Me}_{3} \mathrm{C}, \mathrm{Me} \mathrm{CH}_{2}\right)$, $2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $4.33\left(2 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{OCH}_{2} \mathrm{Me}\right) ; ~ m / z(\mathrm{EI})$ $170.0813 \quad\left(\mathrm{M}^{+}-\mathrm{OCH}_{2} \mathrm{CH}_{3} . \quad \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{3}\right.$ requires $\mathrm{m} / \mathrm{z}$, 170.0817); (CI, isobutane) $216\left(\mathrm{M} \mathrm{H}^{+}\right)$.

Similarly prepared was ethyl ( $Z$ )-3-oxo-2-(tricyclo[3.3.1.1 ${ }^{3,7}$ ]decan-1-yloxyimino)butyrate $6 \mathbf{r}$ obtained as an oil ( $40 \%$ ), $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2830,2750,1745,1730$ and $1700 ; v_{\text {max }}{ }^{-}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2820,2750,1735,1700$ sh and $1680 ; \delta\left(\mathrm{CDCl}_{3}\right)$ $1.31\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{MeCH}_{2}\right), 1.67\left(6 \mathrm{H}, \mathrm{br} \mathrm{s} ,3 \times \mathrm{CH}_{2}\right), 1.94(6 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{s}, 3 \times \mathrm{CH}_{2}\right), 2.21(3 \mathrm{H}, \mathrm{brs}, 3 \times \mathrm{CH}), 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $4.30\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}, \mathrm{OCH}_{2} \mathrm{Me}\right)$.

Ethyl(Z)-2-(1-Methylcyclopentyloxyimino)-3-oxobutyrate $\mathbf{6 n}$. -Ethyl (Z)-2-hydroxyimino-3-oxobutyrate 5 ( $5.6 \mathrm{~g}, 35.2$ mmol ) and 1-methylcyclopentyl bromide ( $6.01 \mathrm{~g}, 36.8 \mathrm{mmol}$ ) in dry 1,4 -dioxane ( $30 \mathrm{~cm}^{3}$ ) were stirred in the dark and treated with silver trifluoromethanesulphonate ( $9.45 \mathrm{~g}, 36.8 \mathrm{mmol}$ ), added portionwise during 3 h . The mixture was stirred for a further 40 h , filtered through Celite and the solvent was removed to leave an oil, to which toluene was added and removed. The residual oil was chromatographed to give the $O$-(1-methylcyclopentyl)oxime $6 \mathrm{n}\left(4.45 \mathrm{~g}, 50 \%\right.$ ) as an oil, $\mathrm{v}_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $2970,1745,1690,1590,1370,1320,1230,1070$ and 990; $\delta\left(\mathrm{CDCl}_{3}\right) 1.31(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{MeCH} 2), 1.48(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.1-2.2(8$ $\mathrm{H}, \mathrm{m}, 8 \times$ cyclopentyl CH$), 2.35(2 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $4.30(2 \mathrm{H}$, $\mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{Me}$ ).

Similarly prepared were the following: ethyl (Z)-2-(1-methyl-cyclohexyloxyimino)-3-oxobutyrate $\mathbf{6 0}(69 \%$ ) as an oil (Found: $\mathrm{C}, 61.2 ; \mathrm{H}, 8.3 ; \mathrm{N}, 5.6 \% ; \mathrm{MH}^{+}, 256.1537 . \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires C, 61.15; H, 8.3; N, $5.5 \% ; \mathrm{MH}, 256.1549$ ); $\mathrm{v}_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ $2945,1740,1685,1370,1320,1235,1060$ and $1005 ; \delta\left(\mathrm{CDCl}_{3}\right)$ $1.35(6 \mathrm{H}, \mathrm{s}$ superimposed on $\mathrm{t}, \mathrm{Me}, \mathrm{MeCH} 2), 1.4-2.0(10 \mathrm{H}, \mathrm{m}$, $10 \times$ cyclohexyl CH), $2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $4.55(2 \mathrm{H}, \mathrm{q}$, $J 7, \mathrm{OCH}_{2} \mathrm{Me}$ ).

Ethyl (Z)-2-(1-methylcycloheptyloxyimino)-3-oxobutyrate 6p $(65 \%) ; v_{\text {max }}\left({\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2930,2850,1740,1685,1595, ~}_{\text {, }}\right.$ $1370,1320,1230,1070$ and $1000 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.33(6 \mathrm{H}, \mathrm{s}$ superimposed on $\mathrm{t}, \mathrm{MeC}, \mathrm{MeCH} 2), 1.4-1.8(10 \mathrm{H}, \mathrm{m}, 10 \times$ cycloheptyl CH), $1.99(2 \mathrm{H}, \mathrm{dd}, J \sim 13.5$ and $7.5,2 \times$ cycloheptyl CH), $2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $4.35(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\mathrm{OCH}_{2} \mathrm{Me}$ ); $m / z(\mathrm{CI}) 270\left(\mathrm{MH}^{+}\right)$.

Ethyl ( $Z$ )-2-(bicyclo[2.2.2] octan-1-ylox yimino)-3-oxobutyrate $6 \mathrm{q}(22 \%), v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2950,2925,2860,1735,1685$, 1370 and $1325 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.3(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{MeCH} 2), 1.64$ (s) ard 1.75 (s) (together $13 \mathrm{H}, 6 \times \mathrm{CH}_{2}, \mathrm{CH}$ ), $2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $4.30\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right) ; m / z(\mathrm{CI}) 298\left(\mathrm{MH}^{+}\right)$.

Preparation of Tertiary AlkylOximes using $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$.-Ethyl (Z)-2-(t-Butoxyimino)-3-oxobutyrate $6 \mathbf{k}$ (Alternative Preparation). Ethyl (Z)-2-hydroxyimino-3-oxobutyrate $5(1.59 \mathrm{~g}, 10$ $\mathrm{mmol})$, t -butyl alcohol ( $0.925 \mathrm{~g}, 12.5 \mathrm{mmol}$ ) and $3 \AA$ molecular sieves ( 5 g ) in dry methylene dichloride ( $25 \mathrm{~cm}^{3}$ ) under argon were stirred and treated with boron trifluoride-diethyl ether $\left(1.85 \mathrm{~cm}^{3}, 2.13 \mathrm{~g}, 1.5 \mathrm{mmol}\right)$ and the mixture was heated under reflux for 3 h . The solvent was decanted off and the molecular sieves were washed well with methylene dichloride. The combined organic solutions were washed successively with water, dil. aq. sodium hydrogen carbonate, water and brine, and then dried. After removal of solvent the residue was chromatographed on silica gel to give the ( $Z$ )-oxime $6 \mathrm{k}(1.16 \mathrm{~g}$, $54 \%$ ) together with ethyl ( $E$ )-2-(t-butoxyimino)-3-oxobutyrate $(0.11 \mathrm{~g}, 5 \%), v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1720,1365,1320,1220,1180$,

1090 and $985 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.35\left(12 \mathrm{H}, \mathrm{s}\right.$, superimposed on $\mathrm{t}, \mathrm{Me}_{3}$, MeCH ), 2.36 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$ ) and $4.30\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right.$ ); and ethyl 3-oxo-2-(1,1,3,3-tetramethylbutoxyimino)butyrate $6 \mathbf{u}$ $(0.104 \mathrm{~g}, 4 \%), v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1740,1685,1370,1315,1235$, 1070 and $1000 ; \delta\left(\mathrm{CDCl}_{3}\right) 0.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 1.31(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{MeCH}_{2}$ ), 1.41 ( $6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{C}$ ), $1.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 2.39(3 \mathrm{H}, \mathrm{s}$, MeCO ) and 4.30 ( $2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}$ ), $m / z$ (EI) (Found: $\mathrm{MH}^{+}$, 272.1864. $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{4}$ requires $m / z, 272.1862$.

Similarly prepared was ethyl ( $Z$ )-2-(1-methylcyclohexyloxy-imino)-3-oxobutyrate $\mathbf{6 0}(73 \%$ ) obtained as an oil, together with a $16: 5$ mixture of the $(E)$ - and ( $Z$ )-isomer ( $14 \%$ ).

Ethyl (Z)-2-(1-Methylcyclobutyloxyimino)-3-oxobutyrate $\mathbf{6 m}$.-Methyllithium ( 8 mmol ) in diethyl ether was added dropwise to a solution of cyclobutanone ( $0.50 \mathrm{~g}, 7.1 \mathrm{mmol}$ ) in diethyl ether $\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h then quenched with saturated aq. ammonium chloride. The ethereal layer was washed with brine, dried and evaporated. The residual 1 -methylcyclobutanol ${ }^{19}$ was used without further purification.

Boron trifluoride-diethyl ether ( $0.88 \mathrm{~cm}^{3}, 7.17 \mathrm{mmol}$ ) was added to a mixture of ethyl ( $Z$ )-2-hydroxyimino-3-oxobutyrate $5(1.14 \mathrm{~g}, 7.17 \mathrm{mmol})$, the residual 1 -methylcyclobutanol and $4 \AA$ sieves ( 4 g ) in methylene dichloride ( $15 \mathrm{~cm}^{3}$ ). The mixture was stirred under reflux for 24 h , then decanted into water. The organic phase was washed successively with saturated aq. sodium hydrogen carbonate, water and brine, dried and evaporated. The residue was purified by chromatography to give the title product $6 \mathrm{~m}(0.428 \mathrm{~g}, 26 \%)$ as an oil, $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2970$, 1740 and $1690 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.34\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{Me}\right)$, 1.49 ( 3 $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.60-2.05\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.3-2.5(5 \mathrm{H}, \mathrm{m}$, superimposed ons at $\left.\delta 2.41, \mathrm{MeCO}, \mathrm{CH}_{2}\right)$ and $4.35(2 \mathrm{H}, \mathrm{q}, J$ 7.2, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right) ; \delta_{\mathbf{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \quad 12.5\left(\mathrm{C}-3^{\prime}\right), 14.1$ $\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 23.9$ ( $\left.1^{\prime}-\mathrm{Me}\right), 25.1$ (C-4), 33.4 ( $\mathrm{C}-2^{\prime}$ and $\left.\mathrm{C}-4^{\prime}\right), 61.8$ $\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 85.4\left(\mathrm{C}-1^{\prime}\right), 150.2$ (C-2), 161.6 (C-1) and 193.1 (C-3).

Preparation of Aminothiazoles 10.-Ethyl (Z)-2-(2-amino-thiazol-4-yl)-2-(cyclohexyloxyimino)acetate 10g. A solution of bromine ( $4.50 \mathrm{~cm}^{3}, 87 \mathrm{mmol}$ ) in carbon tetrachloride $\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise to a mixture of oxime $\mathbf{6 g}(20 \mathrm{~g}, 83 \mathrm{mmol})$, $45 \%$ hydrogen bromide in acetic acid ( $1.0 \mathrm{~cm}^{3}$ ) and carbon tetrachloride ( $150 \mathrm{~cm}^{3}$ ) during 1.5 h . After being stirred for a further 1 h the mixture was evaporated. The residual oil was dissolved in ethyl acetate, and the solution was washed successively with water and brine, dried and evaporated to give the bromo ketone 7 g as a pale yellow oil.
This oil was dissolved in ethanol ( $250 \mathrm{~cm}^{3}$ ), thiourea $(6.06 \mathrm{~g}$, 79.7 mmol ) and $N, N$-dimethylaniline ( $9.64 \mathrm{~g}, 79.7 \mathrm{mmol}$ ) were added and the mixture was stirred at room temperature for 17 h . The solvent was evaporated off and the residue was partitioned between ethyl acetate and water. The organic phase was washed with brine, dried and evaporated. Chromatography and recrystallisation from cyclohexane gave the title product $10 \mathrm{~g}\left(17.0 \mathrm{~g}, 72 \%\right.$ ), m.p. $133-134^{\circ} \mathrm{C}$ (Found: C, $52.7 ; \mathrm{H}, 6.7$; N, 14.1. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 52.5 ; \mathrm{H}, 6.4 ; \mathrm{N}, 14.1 \%$ ); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730$ and $1605 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.34(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{MeCH}_{2}$ ), 1.3-2.0 ( $10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), $4.3(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.36(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{MeCH}_{2}\right), 5.4\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.68(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$.
Similarly prepared were: Ethyl (Z)-2-(2-aminothiazol-4-yl)-2(cyclopropyloxyimino) acetate 10d (76\%), m.p. 163-166 ${ }^{\circ} \mathrm{C}$ (from EtOAc-hexane) (Found: C, 47.3; H, 5.1; N, 16.4. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 47.05 ; \mathrm{H}, 5.1 ; \mathrm{N}, 16.5 \%) ; v_{\max }\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1735$, 1715 and $1605 ; \delta\left(\mathrm{CDCl}_{3}\right) 0.60-0.95\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.35(3 \mathrm{H}, \mathrm{t}$, $\left.J 7, \mathrm{MeCH}_{2}\right), 4.17(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.37\left(2 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2}\right), 5.48$ ( $2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}$ ) and $6.72(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$.
Ethyl (Z)-2-(2-aminothiazol-4-yl)-2-(cycloheptyloxyimino)acetate $10 \mathrm{~h}(69 \%)$, m.p. $107-108{ }^{\circ} \mathrm{C}$ (from methylene dichloridehexane) (Found: C, 54.2; H, 6.7; N, 13.3. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$
requires $\mathrm{C}, 54.0 ; \mathrm{H}, 6.8 ; \mathrm{N}, 13.5 \%$ ); $\mathrm{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1723$ and $\left.1611 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.33(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{MeCH})_{2}\right), 1.4-2.0(12 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 4.35(3 \mathrm{H}, \mathrm{q}+\mathrm{m}, \mathrm{MeCH}, \mathrm{CH}), 5.60\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.64(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$.
Ethyl (Z)-2-(2-aminothiazol-4-yl)-2-(cyclooctyloxyimino)acetate 10i ( $72 \%$ ), m.p. 117-118 ${ }^{\circ} \mathrm{C}$ (from cyclohexane) (Found: C, 55.7; H, 7.2; $\mathrm{N}, 12.45 . \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 55.4 ; \mathrm{H}, 7.1$; $\mathrm{N}, 12.9 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1718$ and $1610 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.35$ ( $3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{MeCH}$ ), $1.4-2.0\left(14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ ), $4.36(3 \mathrm{H}, \mathrm{q}+\mathrm{m}$, $\mathrm{MeCH} 2, \mathrm{CH}), 5.65\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.66(1 \mathrm{H}, \mathrm{s}$, thiazole 5-H).
Ethyl (Z)-2-(2-aminothiazol-4-yl)-2-(t-butoxyimino)acetate 10k $\left(74 \%\right.$ ), m.p. $111-112^{\circ} \mathrm{C}$ (from ethyl acetate-hexane) (Found: C, 49.0; H, 6.2; N, 15.5\% M ${ }^{+}$, 271.0994. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 48.7 ; \mathrm{H}, 6.3 ; \mathrm{N}, 15.5 \% ; \mathrm{M}, 271.0991) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 3470,3375,1735,1610$ and $1430 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.33(9 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}_{3} \mathrm{C}$ ), 1.35 ( $3 \mathrm{H}, \mathrm{t}, \mathrm{MeCH} 2$ ), $4.40\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 6.18$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.70(1 \mathrm{H}, \mathrm{s}$, thiazole, $5-\mathrm{H})$.
Ethyl (Z)-2-(2-aminothiazol-4-yl)-2-(1-methylcyclopropyloxyimino) acetate $101\left(51 \%\right.$ ), m.p. $102-103{ }^{\circ} \mathrm{C}$ (from cyclohexanehexane) (Found: C, 49.1; H, 5.6; N, 15.35. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 49.1 ; \mathrm{H}, 5.6 ; \mathrm{N}, 15.6 \%$ ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1733,1612$ and $1535 ; \delta\left(\mathrm{CDCl}_{3}\right) 0.58(2 \mathrm{H}, \mathrm{m}, 2 \times$ cyclopropyl CH), 1.00 $\left(2 \mathrm{H}, \mathrm{m}, 2 \times\right.$ cyclopropyl CH), $1.35\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{MeCH}_{2}\right), 1.57$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}$ ), $4.37\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{MeCH}_{2}\right), 5.70\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.73(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$.
Ethyl (Z)-2-(2-aminothiazol-4-yl)-2-(1-methylcyclobutyloxyimino) acetate $10 \mathrm{~m}\left(57 \%\right.$ ), m.p. $106-107^{\circ} \mathrm{C}$ (from cyclohexane) (Found: C, 51.0; H, 5.9; N, 14.5. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires C, 50.9; $\mathrm{H}, 6.05 ; \mathrm{N}, 14.8 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1734,1614$ and 1540 ; $\delta\left(\mathrm{CDCl}_{3}\right) 1.37\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.46(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.6-2.0$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.39\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.40(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 5.70\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.75(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$.

Ethyl (Z)-2-(2-aminothiazol-4-yl)-2-(1-methylcyclopentyloxyimino)acetate $10 \mathrm{n}\left(64 \%\right.$ ), m.p. $94-95^{\circ} \mathrm{C}$ (from ethyl acetatehexane) (Found: C, 52.8; H, 6.4; N, 14.1. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires C, $52.5 ; \mathrm{H}, 6.4 ; \mathrm{N}, 14.1 \%) ; v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3475,3380,2960$, 1735, 1605, 1530, 1175 and 970; $\delta\left(\mathrm{CDCl}_{3}\right) 1.34(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{Me} \mathrm{CH}_{2}$ ), 1.45 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}$ ), $1.0-2.2(8 \mathrm{H}, \mathrm{m}, 8 \times$ cyclopentyl CH ), $4.31\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 5.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$ and 6.62 ( $1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}$ ).
Ethyl (Z)-2-(2-aminothiazol-4-yl)-2-(1-methylcyclohexyloxyimino) acetate $100(71 \%)$, m.p. $125.5^{\circ} \mathrm{C}$ (from cyclohexanehexane) (Found: C, 54.2; H, 6.9; N, 13.25\%; $\mathbf{M}^{+}, 311.1303$. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 54.0 ; \mathrm{H}, 6.8 ; \mathrm{N}, 13.5 \% ; \mathrm{M}, 311.1303$ ); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3470,3380,1735,1605,1530,1375,1240$, 1045 and $975 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.0-2.0\left(16 \mathrm{H}, \mathrm{m}, \mathrm{MeC}, M e \mathrm{CH}_{2}\right.$, $10 \times$ cyclohexyl CH), $4.35\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 5.85(2 \mathrm{H}$, $\left.\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.67(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$.

Ethyl (Z)-2-(2-aminothiazol-4-yl)-2-(1-methylcycloheptyloxyimino)acetate 10p $\left(73 \%\right.$ ), obtained as an oil (Found: $\mathbf{M}^{+}$, 325.1468. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{M}, 325.1460$ ); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 3470,3380,3260,3110,2930,1730,1605,1520,1210,1175$ and 1030; $\delta\left(\mathrm{CDCl}_{3}\right) 1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}), 1.1-1.20(15 \mathrm{H}, \mathrm{m}$, $\mathrm{Me} \mathrm{CH}_{2}, 12 \times$ cycloheptyl CH ), $4.33\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right)$, $6.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.61(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$.

Ethyl (Z)-2-(2-aminothiazol-4-yl)-2-(bicyclo[2.2.2]octan-1-yloxyimino) acetate $10 \mathrm{q}\left(59 \%\right.$ ), m.p. 139-140 ${ }^{\circ} \mathrm{C}$ (from methylene dichloride-hexane) (Found: C, 56.1; H, 6.4; N, 12.8. $\mathrm{C}_{15} \mathrm{H}_{21}{ }^{-}$ $\mathrm{N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires C, $55.7 ; \mathrm{H}, 6.55 ; \mathrm{N}, 13.0 \%$; ; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ 3480, 3390, 2960, 2930, 2870, 1735 and $1605 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.35$ ( $3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{Me} \mathrm{CH}_{2}$ ), $1.57(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.6-1.9(12 \mathrm{H}, \mathrm{m}$, $\left.6 \times \mathrm{CH}_{2}\right), 4.37\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{Me}\right), 5.49\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.73(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$.

Ethyl (Z)-2-(2-aminothiazol-4-yl)-2-tricyclo[3.3.1.1 $\left.{ }^{3,7}\right]$ decan-1-yloxyimino)acetate 10r (47\%), m.p. $152-153^{\circ} \mathrm{C}$ (from ethyl acetate-hexane) (Found: C, $58.7 ; \mathbf{H}, 6.6 ; \mathrm{N}, 11.9 ; \mathrm{M}^{+}, 349.1461$. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 58.4 ; \mathrm{H}, 6.6 ; \mathrm{N}, 12.0 \% ; \mathrm{M}, 349.1460$ );
$v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2915,2855,1735,1605,1530,1305,1075$, 1040 and 975 ; $\delta\left(\mathrm{CDCl}_{3}\right) 1.35\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{Me} \mathrm{CH}_{2}\right), 1.65(6 \mathrm{H}$, br s, $6 \times$ adamantyl CH), $1.90(6 \mathrm{H}$, br s, $6 \times$ adamantyl CH$), 2.16$ ( $3 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \times$ adamantyl CH ), $4.37\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right)$, $5.65\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.71(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$.

Alkylation of Ethyl (Z)-2-(2-Aminothiazol-4-yl)-2-(hydroxyimino acetate 8.-A solution of oxime 8* $(10 \mathrm{~g}, 46.5 \mathrm{mmol})$ in DMSO ( $100 \mathrm{~cm}^{3}$ ) was treated with cyclopentyl bromide ( 10.4 g , 70 mmol ) and anhydrous potassium carbonate ( $20.5 \mathrm{~g}, 148$ $\mathrm{mmol})$. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 20 h , then poured into stirred water $\left(1000 \mathrm{~cm}^{3}\right)$. The precipitate was collected by filtration, washed with water and dried at $40^{\circ} \mathrm{C}$ under reduced pressure to give ethyl ( $Z$ )-2-(2-aminothiazol-4-yl)-2-(cyclopentyloxyimino) acetate 10 ( $10.7 \mathrm{~g}, 81 \%$ ), m.p. $136-138{ }^{\circ} \mathrm{C}$ (from cyclohexane) (lit., ${ }^{20} 134-136{ }^{\circ} \mathrm{C}$ ) (Found: C, 51.0 ; H, 6.2; N, 14.6. Calc. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 50.9 ; \mathrm{H}, 6.05 ; \mathrm{N}, 14.8 \%$ ); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1725,1600$ and $1525 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.33(3 \mathrm{H}, \mathrm{t}, J$ 7, $\mathrm{Me} \mathrm{CH}_{2}$ ), 1.5-1.9 ( $8 \mathrm{H}, \mathrm{m}$, cyclopentyl $\mathrm{CH}_{2}$ ), $4.34(2 \mathrm{H}, \mathrm{q}$, $\mathrm{MeCH} \mathrm{H}_{2}$, $4.81(1 \mathrm{H}, \mathrm{m}$, cyclopentyl CH$), 5.65\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{NH}_{2}\right)$ and $6.64(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$.

Alkylation of Ethyl (Z)-2-Hydroxyimino-2-(2-tritylamino-thiazol-4-yl)acetate 9 and Detritylation Procedure.-Cyclohexylmethyl bromide ( $2.21 \mathrm{~g}, 12.5 \mathrm{mmol}$ ) was added to a mixture of oxime 9* $(3.08 \mathrm{~g}, 6.7 \mathrm{mmol})$ and potassium carbonate ( $2.07 \mathrm{~g}, 15 \mathrm{mmol}$ ) in DMSO ( $15 \mathrm{~cm}^{3}$ ). The mixture was stirred for 22 h , then partitioned between ethyl acetate and water. The organic phase was washed with water and brine, dried and evaporated. The residue was dissolved in a mixture of formic acid ( $30 \mathrm{~cm}^{3}$ ) and water ( $6 \mathrm{~cm}^{3}$ ). After being stirred for 3 h , the mixture was evaporated and the residue was chromatographed and crystallised from cyclohexane to give ethyl (Z)-2-(2-aminothiazol-4-yl)-2-(cyclohexylmethoxyimino)acetate $10 \mathrm{j}\left(1.2 \mathrm{~g}, 62 \%\right.$ ), m.p. $107-107.5^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 54.2 ; \mathrm{H}$, 6.6; $\mathrm{N}, 13.3 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 54.0 ; \mathrm{H}, 6.8 ; \mathrm{N}, 13.5 \%$ ); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730$ and $1600 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.0-1.8(11 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}, \mathrm{CH}$ ), 1.33 ( $3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{MeCH} 2$ ), $3.97(2 \mathrm{H}, \mathrm{d}, J 6$, $\left.\mathrm{OCH}_{2} \mathrm{CH}\right), 4.35\left(2 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2}\right), 5.60\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.63(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$.

Hydrolysis of the Ethyl Esters 10.-(Z)-2-(2-Aminothiazol-4-yl)-2-(cyclopentyloxyimino)acetic acid $11 \mathrm{f} .1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ ( $14 \mathrm{~cm}^{3}$ ) was added to a solution of ester $10 \mathrm{f}(2.0 \mathrm{~g}, 7.06 \mathrm{mmol})$ in ethanol ( $30 \mathrm{~cm}^{3}$ )-water $\left(15 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 16 h . The ethanol was evaporated off and the residual solution was diluted with water $\left(25 \mathrm{~cm}^{3}\right)$, washed with ethyl acetate and acidified to pH 2.8 with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$. The precipitate was collected by filtration, washed with cold water and dried at $40^{\circ} \mathrm{C}$ under reduced pressure to give the title product $11 \mathrm{f}\left(1.44 \mathrm{~g}, 80 \%\right.$ ), m.p. $174^{\circ} \mathrm{C}$ (decomp.) (from water) [lit., ${ }^{20} 186^{\circ} \mathrm{C}$ (decomp.)] (Found: C, $47.05 ; \mathrm{H}, 5.2 ; \mathrm{N}, 16.3$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 47.05 ; \mathrm{H}, 5.1 ; \mathrm{N}, 16.45 \%$ ); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 1640; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.7\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.5\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.66$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.79(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$ and $7.2\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right)$.
Similarly prepared were: (Z)-2-(2-Aminothiazol-4-yl)-2-( $t$ butoxyimino) acetic acid 11k ( $713 \mathrm{mg}, 29 \%$ ), m.p. $164-166^{\circ} \mathrm{C}$ (decomp.) (Found: C, 44.0; H, 5.4; N, $16.8 \% ;$ M $^{+}, 243.0682$. $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires C, 43.6; $\mathrm{H}, 5.5 ; \mathrm{N}, 17.0 \%$; M, $243.0678) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1628,1448,1386,1363,1262,1192$ and 992; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.35\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 6.85(1 \mathrm{H}$, s, thiazole $5-\mathrm{H})$ and 7.28 ( $3 \mathrm{H}, \mathrm{brs}, \mathrm{NH}_{2}, \mathrm{CO}_{2} \mathrm{H}$ ). Evaporation of the water washings gave a further quantity of the acid $11 \mathrm{k}(1.03 \mathrm{~g}, 42 \%)$ (combined yield 71\%).
(Z)-2-(2-Aminothiazol-4-yl)-2-(1-methylcyclopentyloxy-

[^0]imino) acetic acid $11 \mathrm{n}(52 \%)$, m.p. $192-193^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3365,2963,1636,1574,1391$ and $984 ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.37(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeC}), 1.54-1.61(6 \mathrm{H}, \mathrm{m}, 6 \times$ cyclopentyl CH$), 1.80-1.95(2 \mathrm{H}$, $\mathrm{m}, 2 \times$ cyclopentyl CH$), 6.81(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$ and 7.27 ( $2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}$ ).
(Z)-2-(2-Aminothiazol-4-yl)-2-(1-methylcyclohexyloxyimino) acetic acid 110 ( $69 \%$ ), m.p. $203-204^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}$, 283.0991. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{M}, 283.0991$ ); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1639, 1573, 1395, 987 and 972; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2}\right] 1.23(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 1.31-1.51 ( $8 \mathrm{H}, \mathrm{m}, 8 \times$ cyclohexyl CH$), 1.78(2 \mathrm{H}$, br d, $J 12.6$, $2 \times$ cyclohexyl CH), $6.80(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$ and $7.28(2 \mathrm{H}$, brs, $\mathrm{NH}_{2}$ ).
(Z)-2-(2-Aminothiazol-4-yl)-2-(1-methylcycloheptyloxyimino) acetic acid $11 p\left(66 \%\right.$ ), m.p. $173-179^{\circ} \mathrm{C}$ (decomp.) (Found: C, 51.9; $\mathrm{H}, 6.3 ; \mathrm{N}, 13.6 . \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires C , $51.7 ; \mathrm{H}, 6.5 ; \mathrm{N}, 13.9 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1626 ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.26$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}$ ), $1.27-2.0(12 \mathrm{H}, \mathrm{m}, 12 \times$ cycloheptyl CH$), 6.79$ $(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$ and $7.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right) ; m / z(\mathrm{CI}) 298\left(\mathrm{MH}^{+}\right)$.
( $Z$ )-2-(2-Aminothiazol-4-yl)-2-(bicyclo[2.2.2]octan-1-yloxyimino) acetic acid, $11 \mathrm{q}(45 \%), v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1640,1571,1396$ and $\left.976 ; \delta\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.53(1 \mathrm{H}$, br s, CH $), 1.66(12 \mathrm{H}$, br s, $\left.6 \times \mathrm{CH}_{2}\right), 6.77(1 \mathrm{H}$, thiazole $5-\mathrm{H})$ and $7.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right) ; m / z$ (EI) $295\left(\mathrm{M}^{+}\right)$.
( $Z$ )-2-(2-Aminothiazol-4-yl)-2-(tricyclo[3.3.1.1 ${ }^{3,7}$ ]decan-1yloxyimino)acetic acid $11 r$, m.p. $203-204^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1628,1450,1393,1351,1300$ and $973 ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.73(6 \mathrm{H}$, br s, $6 \times$ adamantyl CH$), 1.92(6 \mathrm{H}$, br s, $6 \times$ adamantyl CH$)$, $2.23(3 \mathrm{H}$, br s, $3 \times$ adamantyl CH$), 6.85(1 \mathrm{H}, \mathrm{s}$, thiazol $5-\mathrm{H})$ and $7.37\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{NH}_{2}\right) ; m / z$ (EI) $277.1246\left(\mathrm{M}^{+}-\mathrm{CO}_{2}\right.$ requires $m / z, 277.1249) ; m / z(\mathrm{FAB}) 322\left(\mathrm{MH}^{+}\right), 344\left(\mathrm{MNa}^{+}\right)$, $643\left[(2 \mathrm{M}+\mathrm{H})^{+}\right]$and $665\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right]$.

Sodium (Z)-2-(2-Aminothiazol-4-yl)-2-(1-methylcyclopropyloxyimino) acetate 111 Sodium Salt.-The ester $101(170 \mathrm{mg}$, 0.63 mmol ) was hydrolysed in a similar way to that described above, but the aq. solution containing the sodium salt was concentrated, loaded onto HP20SS and eluted with water. Fractions containing the pure sodium salt were freeze-dried to give the title product ( 111 sodium salt) ( $138 \mathrm{mg}, 78 \%$ ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1616,1531,1401,1255$ and $956 ; \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 0.59$ ( $2 \mathrm{H}, \mathrm{m}, 2 \times$ cyclopropyl CH ), $0.94(2 \mathrm{H}, \mathrm{m}, 2 \times$ cyclopropyl $\mathrm{CH}), 1.49(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC})$ and $6.83(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (FAB) $264\left(\mathrm{MH}^{+}\right)$and $286\left(\mathrm{MNa}^{+}\right)$.

Similarly prepared was sodium ( $Z$ )-2-(2-aminothiazol-4-yl)-2-(1-methylcyclobutyloxyimino) acetate 11 m sodium salt ( $50 \%$ ), $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1610,1529,1399,1253,1163$ and $958 ; \delta\left(\mathrm{D}_{2} \mathrm{O}\right)$ $1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}), 1.50-1.85(2 \mathrm{H}, \mathrm{m}, 2 \times$ cyclobutyl CH$)$, 1.85-2.0 ( $2 \mathrm{H}, \mathrm{m}, 2 \times$ cyclobutyl CH), $2.20-2.35(2 \mathrm{H}, \mathrm{m}$, $2 \times$ cyclobutyl CH ) and $6.79(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; m / z(\mathrm{FAB})$ $278\left(\mathrm{MH}^{+}\right)$and $300\left(\mathrm{MNa}^{+}\right)$.

Preparation of Thioesters 12.-S-2-Pyridyl (Z)-2-(2-amino-thiazol-4-yl)-2-(cyclohexyloxyimino)thioacetate $12 \mathrm{~g} . \quad 2,2^{\prime}-\mathrm{Di}-$ thiodipyridine $(7.95 \mathrm{~g}, 36 \mathrm{mmol})$ was added to a solution of triphenylphosphine ( $9.46 \mathrm{~g}, 36 \mathrm{mmol}$ ) in acetonitrile $\left(80 \mathrm{~cm}^{3}\right)$. After 15 min the mixture was cooled to $0^{\circ} \mathrm{C}$ and acid $11 \mathrm{~g}(6.5 \mathrm{~g}$, 24 mmol ) was added. The mixture was allowed to warm to room temperature and was stirred for 4 h . The solvent was evaporated off and the residue was chromatographed to give the title product $12 \mathrm{~g}\left(7.4 \mathrm{~g}, 85 \%\right.$ ), m.p. $154-156^{\circ} \mathrm{C}$ (from ethyl acetatehexane) (Found: $\mathrm{C}, 52.9 ; \mathrm{H}, 5.3 ; \mathrm{N}, 15.3 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 53.0 ; \mathrm{H}, 5.0 ; \mathrm{N}, 15.5 \%$ ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1683,1645$ and $1537 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.3-2.0\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.33(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $5.69\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 6.82(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}), 7.34(1 \mathrm{H}, \mathrm{m}$, pyridine-H), $7.76(2 \mathrm{H}, \mathrm{m}$, pyridine- H$)$ and $8.66(1 \mathrm{H}, \mathrm{m}$, pyridine-H).

Similarly prepared were: S-2-Pyridyl (Z)-2-(2-aminothiazol-4$y l)$-2-(t-butoxyimino)thioacetate $12 \mathrm{k}\left(90 \%\right.$ ), m.p. $155-156^{\circ} \mathrm{C}$
(from ethyl acetate-hexane) (Found: C, $50.0 ; \mathrm{H}, 4.8 ; \mathrm{N}, 16.8 \%$; $\mathrm{M}^{+}$, 336.0704. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 50.0 ; \mathrm{H}, 4.8 ; \mathrm{N}$, $16.65 \% ; \mathrm{M}, 336.0715) ; \delta\left[\left(\mathrm{CDCl}_{3}\right)+\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.31(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{3} \mathrm{C}\right), 6.74(1 \mathrm{H}$, s, thiazole $5-\mathrm{H})$ and $6.8-8.7\left(6 \mathrm{H}, \mathrm{m}, \mathrm{NH}_{2}\right.$, $4 \times$ pyridyl CH).
S-2-Pyridyl (Z)-2-(2-aminothiazol-4-yl)-2-(1-methylcyclopentyloxyimino) thioacetate $12 \mathrm{n}(57 \%)$ (except that the reaction time was 20 min ), m.p. $146-149{ }^{\circ} \mathrm{C}$ (from ethyl acetate) (Found: C, $52.9 ; \mathrm{H}, 4.9 ; \mathrm{N}, 15.5 \% ; \mathrm{M}^{+}, 362 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 53.0 ; \mathrm{H}, 5.0 ; \mathrm{N}, 15.5 \% ; \mathrm{M}, 362) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1697,1649$, $1624,1573,1539,1421,1207,990$ and $924 ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.39$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ), $1.63(6 \mathrm{H}, \mathrm{m}, 6 \times$ cyclopentyl CH$), 1.92(2 \mathrm{H}, \mathrm{m}$, $2 \times$ cyclopentyl CH$), 6.92(1 \mathrm{H}$, s, thiazole $5-\mathrm{H}), 7.71(1 \mathrm{H}$, dd, $J 7.8$ and 0.8 , pyridyl CH), $7.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 7.50(1 \mathrm{H}, \mathrm{m}$, pyridyl CH), $7.96(1 \mathrm{H}, \mathrm{dt}, J 1.9$ and 7.7 , pyridyl CH$)$ and $8.64(1$ H, m, pyridyl CH).
S-2-Pyridyl (Z)-2-(2-Aminothiazol-4-yl)-2-(1-methylcyclohexyloxyimino) thioacetate $120\left(71 \%\right.$ ), m.p. $158^{\circ} \mathrm{C}$ (from ethyl acetate-hexane) (Found: C, $54.4 ; \mathrm{H}, 5.3 ; \mathrm{N}, 14.9 \% ; \mathrm{M}^{+}$, 376.1029. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 54.2 ; \mathrm{H}, 5.35 ; \mathrm{N}, 14.9 \%$; $\mathrm{M}, 376.1028) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1694,1652,1623,1538,1419$, $1059,988,936$ and $918 ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.23(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.48$ $(8 \mathrm{H}, \mathrm{m}, 8 \times$ cyclohexyl CH$), 1.84(2 \mathrm{H}$, br d, $J 12.8$, $2 \times$ cyclohexyl $(\mathrm{CH}), 6.91(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}), 7.36(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NH}_{2}\right), 7.50(1 \mathrm{H}$, m, pyridyl CH$), 7.71(1 \mathrm{H}, \mathrm{d}, J 7.8$, pyridyl $\mathrm{CH}), 7.96(1 \mathrm{H}, \mathrm{dt}, J 1.8$ and 7.7 , pyridyl CH$)$ and $8.64(1 \mathrm{H}, \mathrm{m}$, pyridyl CH).
$S$-2-Pyridyl (Z)-2-(2-Aminothiazol-4-yl)-2-(1-methylcycloheptyloxyimino)thioacetate $\mathbf{1 2 p}$ (except that the reaction time was 20 min and the solvent used was methylene dichloride) $(88 \%)$, an oil; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3300,3130,2920,1690,1525$, 1050,985 and $925 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.4-2.2(12 \mathrm{H}, \mathrm{m}$, $12 \times$ cycloheptyl CH$), 6.77(1 \mathrm{H}$, s, thiazole $5-\mathrm{H}), 6.98(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NH}_{2}\right), 7.25(1 \mathrm{H}, \mathrm{m}$, pyridyl CH$), 7.65(2 \mathrm{H}$, br s, $2 \times$ pyridyl $\mathrm{CH})$ and $8.62(1 \mathrm{H}, \mathrm{m}$, pyridyl CH$)$.
S-2-Pyridyl (Z)-2-(2-aminothiazol-4-yl)-2-(tricyclo[3.3.1.1 ${ }^{3,7}$ ]-decan-1-yloxyimino)thioacetate $12 \mathrm{r}\left(87 \%\right.$ ), m.p. $>300^{\circ} \mathrm{C}$ (from acetonitrile) (Found: C, $57.8 ; \mathrm{H}, 5.4 ; \mathrm{N}, 12.9 \% ; \mathrm{M}^{+}, 414.1184$. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 57.9 ; \mathrm{H}, 5.35 ; \mathrm{N}, 13.5 \% ; \mathrm{M}^{+}$, 414.1184); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3290,3125,1680,1645,1530,1345$, $1070,990,925$ and $915 ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.61(6 \mathrm{H}$, br s , $6 \times$ adamantyl CH$), 1.81(6 \mathrm{H}$, br s, $6 \times$ adamantyl CH$), 2.15$ ( $3 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \times$ adamantyl CH ), $6.9(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}), 7.36(2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 7.5(1 \mathrm{H}, \mathrm{m}$, pyridyl CH$), 7.7(1 \mathrm{H}, \mathrm{d}, J 7.8$, pyridyl $\mathrm{CH}), 7.94(1 \mathrm{H}, \mathrm{m}$, pyridyl CH$)$ and $8.64(1 \mathrm{H}, \mathrm{m}$, pyridyl CH$)$.

Formation of Penicillins 4 using the Thioester Coupling Procedure.-Sodium 6 $\beta$-[(Z)-2-(2-aminothiazol-4-yl)-2-(cyclohexyloxyimino)acetamido] penicillanate $\mathbf{4 g}$. To a solution of $6 \beta$-aminopenicillanic acid ( $3.29 \mathrm{~g}, 15.2 \mathrm{mmol}$ ) in methylene dichloride $\left(70 \mathrm{~cm}^{3}\right)$ was added triethylamine $\left(4.67 \mathrm{~cm}^{3}, 33.5\right.$ $\mathrm{mmol})$ and trimethylsilyl chloride $\left(4.25 \mathrm{~cm}^{3}, 33.5 \mathrm{mmol}\right)$. The mixture was heated under reflux for 1 h , cooled to $0^{\circ} \mathrm{C}$, and the thioester $12 \mathrm{~g}(4.6 \mathrm{~g}, 12.7 \mathrm{mmol})$ was added. After the mixture had been stirred at room temperature for 26 h the solvent was evaporated off. The residue was partitioned between ethyl acetate and water, and the pH was adjusted to 7 . Ethyl acetate was added to the aq. layer and the pH was adjusted to 2.8 $\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\right.$ ). This organic phase was washed successively with water and brine. Water was added to the organic phase and the pH was adjusted to $7\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\right)$. The aq. phase was concentrated and chromatographed on HP20SS. Lyophilisation gave the title product $4 \mathrm{~g}(3.49 \mathrm{~g}, 56 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1766, 1662 and 1608; $\delta\left(\mathrm{D}_{2} \mathrm{O}\right)$ 1.3-1.9 $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.53(3 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{Me}), 1.64(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 4.25(2 \mathrm{H}, \mathrm{s}+\mathrm{m}, 3-\mathrm{H}, \mathrm{CH}), 5.64$ and $5.68(2 \mathrm{H}, \mathrm{d}+\mathrm{d}, J 4,5-$ and $6-\mathrm{H})$ and $6.99(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; m / z(\mathrm{FAB}) 512\left(\mathrm{MNa}^{+}\right)$and $490\left(\mathrm{MH}^{+}\right)$.

The following penicillins were prepared from the esters $\mathbf{1 0 h}$,

10 i and 10 j ; yields are given for ester hydrolysis, thioester formation and penicillin coupling.

Sodium 6 $\beta$-[( $Z$ )-2-(2-aminothiazol-4-yl)-2-(cycloheptyloxyimino) acetamido]penicillanate 4 h ( $76,21,44 \%$ ); $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1}$ 1767, 1668 and 1610; $\delta\left(\mathrm{D}_{2} \mathrm{O}\right)$ 1.4-1.9 $\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.51 ( $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$ ), 1.62 ( $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$ ), 4.23 ( $1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$ ), 4.44 $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.62$ and $5.65(2 \mathrm{H}, \mathrm{d}+\mathrm{d}, J 4,5-$ and $6-\mathrm{H})$ and $6.96(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; m / z(\mathrm{FAB}) 526\left(\mathrm{MNa}^{+}\right)$and 504 $\left(\mathrm{MH}^{+}\right)$.

Sodium $\quad 6 \beta-[(Z)$-2-(2-aminothiazol-4-yl)-2-(cyclooctyloxyimino) acetamido] pencillanate $4 \mathrm{i}(93,94,29 \%)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1766,1670 and $1608 ; \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.5-1.9\left(14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.50(3 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{Me}), 1.60(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 4.19(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, 5.59 and $5.63(2 \mathrm{H}, \mathrm{d}+\mathrm{d}, J 4,5-$ and $6-\mathrm{H})$ and $6.90(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; ~ m / z(\mathrm{FAB}) 540\left(\mathrm{MNa}^{+}\right)$and $518\left(\mathrm{MH}^{+}\right)$.

Sodium 6 $\beta$-[(Z)-2-(2-aminothiazol-4-yl)-2-(cyclohexylmethoxyimino)acetamido]penicillanate $4 \mathrm{j}(77,70,42 \%) ; v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1766,1668$ and 1608 ; $\delta\left(\mathrm{D}_{2} \mathrm{O}\right) 0.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.20$ ( $3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}$ ), 1.51 ( $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$ ), 1.62 ( $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$ ), 1.68 ( $6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), $4.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.22(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.61$ and $5.64(2 \mathrm{H}, \mathrm{d}+\mathrm{d}, J 4,5-$ and $6-\mathrm{H})$ and $6.97(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$; $m / z$ (FAB) $526\left(\mathrm{MNa}^{+}\right)$and $504\left(\mathrm{MH}^{+}\right)$.

Similarly prepared from the thioesters were: sodium $6 \beta-[(Z)$ -2-(2-aminothiazol-4-yl)-2-(t-butoxyimino)acetamido]penicil-
lanate $4 \mathrm{k}(447 \mathrm{mg}, 32 \%)$ (the reaction was allowed to proceed for 44 h$), v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1766,1516,1456,1398,1365$ and 1323 ; $\delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.33\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 1.51(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.62(3 \mathrm{H}, \mathrm{s}$, $2-\mathrm{Me}), 4.23(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{d}, J 4.1,5-\mathrm{H}), 5.67(1 \mathrm{H}, \mathrm{d}$, $J 4.0,6-\mathrm{H})$ and $6.95(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; m / z(\mathrm{FAB}) 464\left(\mathrm{MH}^{+}\right)$.
Sodium 6 6 -[(Z)-2-(2-aminothiazol-4-yl)-2-(1-methylcyclopentyloxyimino) acetamido]penicillanate 4 n ( $30 \%$ ) (reaction time 70 h$), \lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm} 290\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 7730\right)$ and 232 (12580); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1765,1608,1525,1397$ and 1323; $\delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.51(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) 1.92(9 \mathrm{H}, \mathrm{s}$, superimposed on m, Me, $6 \times$ cyclopentyl CH), $1.98(2 \mathrm{H}, \mathrm{m}$, $2 \times$ cyclopentyl CH), $4.22(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{d}, J 4.0,5-\mathrm{H})$, $5.66(1 \mathrm{H}, \mathrm{d}, J 4.0,6-\mathrm{H})$ and $6.94(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; m / z$ (FAB) $512\left(\mathrm{MNa}^{+}\right)$.
Sodium 6 6 -[(Z)-2-(2-aminothiazol-4-yl)-2-(1-methylcyclohexyloxyimino)acetamido]penicillanate 40 ( $32 \%$ ) (reaction time 48 h$), v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1766,1662,1608,1515,1398$ and $1322 ; \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.28(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}), 1.41(8 \mathrm{H}, \mathrm{br} \mathrm{m}, 8 \times$ cyclohexyl CH), $1.51(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.61(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.87(2 \mathrm{H}, \mathrm{m}$, $2 \times$ cyclohexyl CH), $4.22(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{d}, J 3.9,5-\mathrm{H})$, $5.69(1 \mathrm{H}, \mathrm{d}, J 4.0,6-\mathrm{H})$ and $6.93(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$; $m / z$ (FAB) $504\left(\mathrm{MH}^{+}\right)$and $526\left(\mathrm{MNa}^{+}\right)$.
Sodium 6ß-[(Z)-2-(2-aminothiazol-4-yl)-2-(1-methylcycloheptyloxyimino)acetamido]penicillanate 4 p ( $37 \%$ ) (reaction time 4 days), $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 288\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 8050\right)$ and 232 ( 12130 ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1766,1675,1669$ and 1515 ; $\delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.32(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}), 1.52(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}), 1.62(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeC}), 1.3-1.7(10 \mathrm{H}, \mathrm{m}, 10 \times$ cycloheptyl CH$), 1.85-2.05(2 \mathrm{H}$, $\mathrm{m}, 2 \times$ cycloheptyl CH$), 4.22(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.63(1 \mathrm{H}, \mathrm{d}, J 4.1$, $5-\mathrm{H}), 5.68(1 \mathrm{H}, \mathrm{d}, J 4.0,6-\mathrm{H})$ and $6.93(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$; $m / z(\mathrm{FAB}) 518\left(\mathrm{MH}^{+}\right)$and $540\left(\mathrm{MNa}^{+}\right)$.
Sodium $\quad 6 \beta-[(Z)$-2-( 2 -aminothiazol-4-yl)-2-(tricyclo[3.3.1.1 ${ }^{3,7}$ ]decan-1-yloxyimino)acetamido]penicillanate $\quad 4 \mathbf{r}$ ( $32 \%$ ) (reaction time 80 h ), $v_{\max }(\mathrm{KBr}) 1766,1685,1608,1515$, 1351, 1397, 1070 and $964 ; \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.52(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}), 1.63(9 \mathrm{H}$, br s, MeC, $6 \times$ adamantyl CH), $1.90(6 \mathrm{H}, \mathrm{m}, 6 \times$ adamantyl CH), 2.17 ( 3 H, br s, $3 \times$ adamantyl CH), $4.24(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$ ), $5.63(1 \mathrm{H}, \mathrm{d}, J 4,5-\mathrm{H}), 5.68(1 \mathrm{H}, \mathrm{d}, J 4.1,6-\mathrm{H})$ and 6.96 $(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; m / z(\mathrm{FAB}) 542\left(\mathrm{MH}^{+}\right)$and $564\left(\mathrm{MNa}^{+}\right)$.

Preparation of Penicillins via the Mixed Sulphonic Acid Anhydride Route.-Sodium 63-[(Z)-2-(2-aminothiazol-4-yl)-2(cyclopentyloxyimino)acetamido] penicillanate 4f.-A solution of acid $11 \mathrm{f}(5.0 \mathrm{~g}, 19.6 \mathrm{mmol})$ in dimethylformamide (DMF) ( 25
$\mathrm{cm}^{3}$ ) was treated with $N, N$-diisopropylethylamine ( $3.9 \mathrm{~cm}^{3}, 22$ mmol ), then cooled to $-50^{\circ} \mathrm{C}$. Methanesulphonyl chloride ( $1.75 \mathrm{~cm}^{3}, 22 \mathrm{mmol}$ ) was added and the solution was stirred at $-50^{\circ} \mathrm{C}$ for a further 1 h , then added to a preformed solution of $6 \beta$-aminopenicillanic acid ( $5.3 \mathrm{~g}, 24 \mathrm{mmol}$ ) and triethylamine ( $6.6 \mathrm{~cm}^{3}, 47 \mathrm{mmol}$ ) in water $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After the mixture had been stirred for 10 min at $0^{\circ} \mathrm{C}$, ethyl acetate and water were added. The pH was adjusted to 2.8 with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$. The organic phase was washed successively with water and brine. Water was added to the organic phase and the pH adjusted to 7 with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$; the aq. phase was then concentrated and chromatographed on HP20SS. Lyophilisation gave the title product $4 \mathrm{f}(5.2 \mathrm{~g}, 56 \%), v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1764,1662$ and 1607 ; $\delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.52(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.63(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.6-1.8(8 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 4.23(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.62$ and $5.64(2 \mathrm{H}$, $\mathrm{d}+\mathrm{d}, J 4,5-$ and $6-\mathrm{H})$ and $6.98(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (FAB) $498\left(\mathrm{MNa}^{+}\right)$and $476\left(\mathrm{MH}^{+}\right)$.
Similarly prepared were: Sodium $6 \beta-[(Z)-2-(2-a m i n o t h i a z o l-~$ 4-yl)-2-(cyclopropyloxyimino)acetamido]penicillanate $\quad$ dd $(30 \%), v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1765$ and $1610 ; \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 0.6-0.9(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}$ ), 1.50 ( $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$ ), $1.60(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 4.13(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $4.22(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.60(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{and} 6-\mathrm{H})$ and $7.04(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 470\left(\mathrm{MNa}^{+}\right)$and $448\left(\mathrm{MH}^{+}\right)$.
Sodium 6 $\beta$-[(Z)-2-(2-chloroacetamidothiazol-4-yl)-2-(cyclobutyloxyimino)acetamido]penicillanate $20(38 \%), v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1768,1670$ and 1603; $\delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.48-1.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.49 ( $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$ ), 1.60 ( $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$ ), 2.01-2.29 ( $4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), $4.22(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right)$, 5.63 and $5.66(2 \mathrm{H}$, $\mathrm{d}+\mathrm{d}, J 4,5-$ and $6-\mathrm{H})$ and $7.48(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (FAB) $560\left(\mathrm{MNa}^{+}\right)$and $538\left(\mathrm{MH}^{+}\right)$.
Sodium $6 \beta$-[(Z)-2-(2-aminothiazol-4-yl)-2-(bicyclo[2.2.2]-octan-1-yloxyimino) acetamido]penicillanate $4 \mathrm{q}(300 \mathrm{mg}, 55 \%$ ), $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1768,1669,1601$ and $1517 ; \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.49(3 \mathrm{H}, \mathrm{s}$, $2-\mathrm{Me}), 1.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}), 1.61(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.72(12 \mathrm{H}, \mathrm{br} \mathrm{s}$, $12 \times \mathrm{CH}), 4.20(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.59(1 \mathrm{H}, \mathrm{d}, J 4.0,5-\mathrm{H}), 5.64(1 \mathrm{H}$, d, $J 4.0,6-\mathrm{H})$ and $6.92(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$; $m / z$ (FAB) 516 $\left(\mathrm{MH}^{+}\right)$and $538\left(\mathrm{MNa}^{+}\right)$.

Sodium 6ß-[(Z)-2-(2-Aminothiazol-4-yl)-2-(1-methylcyclopropyloxyimino) acetamido] penicillanate 41.-The sodium salt of the acid $111(0.13 \mathrm{~g}, 0.49 \mathrm{mmol})$ was suspended in dry DMF $\left(2 \mathrm{~cm}^{3}\right)$, the mixture was cooled to $-55^{\circ} \mathrm{C}$, methanesulphonyl chloride ( $0.043 \mathrm{~cm}^{3}, 64 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) was added, and the mixture was allowed to warm to $-10^{\circ} \mathrm{C}$ during 40 min . The resultant solution of the mixed sulphonic acid anhydride was then added to a solution of 6-APA ( $140 \mathrm{mg}, 0.65 \mathrm{mmol}$ ) and triethylamine ( $0.15 \mathrm{~cm}^{3}, 108 \mathrm{mg}, 1.08 \mathrm{mmol}$ ) in water $\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After being stirred for 10 min the mixture was diluted with water, its pH was adjusted to 7.0 (from 5.0 ), and the mixture was washed with ethyl acetate. The penicillin was then extracted into ethyl acetate at $\mathrm{pH} 2.8(2 \times)$, the extracts were washed with brine, and the penicillin was then extracted into water at pH 7.0 . The aq. solution was concentrated and chromatographed on HP20SS to give the penicillin $41(0.141 \mathrm{~g}$, $62 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1765,1663,1610$ and $1528 ; \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 0.64$ $(2 \mathrm{H}, \mathrm{m}, 2 \times$ cyclo-propyl CH), $0.97(2 \mathrm{H}, \mathrm{m}, 2 \times$ cyclopropyl $\mathrm{CH}), 1.50(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.52(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.60(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.21$ $(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.59$ and $5.62(2 \mathrm{H} \mathrm{d}+\mathrm{d}, J 4,5-$ and $6-\mathrm{H})$ and 7.02 $(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; m / z(\mathrm{FAB}) 484\left(\mathrm{MNa}^{+}\right)$and 462 $\left(\mathrm{MH}^{+}\right)$.
Similarly prepared was: Sodium $6 \beta-[(Z)-2-(2-a m i n o t h i a z o l-~$ 4-yl)-2-(1-methylcyclobutyloxyimino)acetamido]penicillanate $4 \mathrm{~m}(62 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1765,1663$ and $1609 ; \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.45$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ), 1.51 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ), 1.62 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ), 1.6-2.0 ( $4 \mathrm{H}, \mathrm{m}$, $4 \times$ cyclobutyl CH), $2.30(2 \mathrm{H}, \mathrm{m}, 2 \times$ cyclobutyl CH), 4.23 $(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.62$ and $5.66(2 \mathrm{H}, \mathrm{d}+\mathrm{d}, J 4,5-$ and $6-\mathrm{H})$ and 6.98 $(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; m / z(\mathrm{FAB}) 498\left(\mathrm{MNa}^{+}\right), 476\left(\mathrm{MH}^{+}\right)$and $454\left[(\mathrm{M}-\mathrm{Na}+2 \mathrm{H})^{+}\right]$.

Removal of the Chloroacetamido Protecting Group.-Sodium $6 \beta-[(Z)-2-(2-a m i n o t h i a z o l-4-y l)-2-(c y c l o b u t y l o x y i m i n o) a c e t-~$ amido] penicillinate 4e. Sodium $N$-methyldithiocarbamate ${ }^{21}$ ( $32 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) was added to a solution of the penicillin $\mathbf{2 0}$ ( $134 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) in water $\left(2 \mathrm{~cm}^{3}\right)-\mathrm{THF}\left(1 \mathrm{~cm}^{3}\right)$, and the mixture was stirred for 1.5 h . Water ( $5 \mathrm{~cm}^{3}$ ) was added and the THF was evaporated off. The residual solution was chromatographed on HP20SS. Lyophilisation gave the title product 4 e $(91 \mathrm{mg}, 79 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1768,1663$ and $1603 ; \delta\left(\mathrm{D}_{2} \mathrm{O}\right)$ 1.49 ( $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$ ), $1.60(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.5-1.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 2.0-2.35 (4 H, m, CH2 ), 4.21 ( $1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$ ), ca. $4.63(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$, obscured by HOD), 5.61 and $5.63(2 \mathrm{H}, \mathrm{d}+\mathrm{d}, J 4,5-$ and $6-\mathrm{H})$ and $6.99(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H}) ; m / z(\mathrm{FAB}) 462\left(\mathrm{MH}^{+}\right)$and 440 $\left[(\mathrm{M}-\mathrm{Na}+2 \mathrm{H})^{+}\right]$.

Preparation of (Z)-2-(2-Chloroacetamidothiazol-4-yl)-2(cyclobutyloxyimino)acetic Acid 19.-N-Cyclobutyloxyphthalimide 17. Cyclobutanol ( $2.52 \mathrm{~g}, 35 \mathrm{mmol}$ ), triphenylphosphine ( $13.8 \mathrm{~g}, 53 \mathrm{mmol}$ ) and $N$-hydroxyphthalimide 16 ( $6.85 \mathrm{~g}, 42 \mathrm{mmol}$ ) were dissolved in THF ( $200 \mathrm{~cm}^{3}$ ) and treated dropwise with a solution of diethyl azodicarboxylate (DEAD) ( $8.27 \mathrm{~cm}^{3}, 53 \mathrm{mmol}$ ) in THF ( $10 \mathrm{~cm}^{3}$ ). The mixture was stirred for 1.5 h and then evaporated. The residue was chromatographed and recrystallised from ethyl acetate-hexane to give the title product $17(5.0 \mathrm{~g}, 66 \%)$, m.p. $95-96^{\circ} \mathrm{C}$ (Found: C, 66.3; $\mathrm{H}, 5.1 ; \mathrm{N}, 6.4 . \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3}$ requires $\mathrm{C}, 66.35 ; \mathrm{H}, 5.1 ; \mathrm{N}, 6.45 \%$ ); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1785$ and $1730 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.5-2.4(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 4.78(1 \mathrm{H}$, quintet, $J 7, \mathrm{CH})$ and $7.80(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
(2-Chloroacetamidothiazol-4-yl)glyoxylic acid 15. A solution of ethyl (2-aminothiazol-4-yl)glyoxylate $13(16.0 \mathrm{~g}, 80 \mathrm{mmol})$ in DMA $\left(120 \mathrm{~cm}^{3}\right)$ was treated with chloroacetyl chloride ( 19.2 $\mathrm{cm}^{3}, 240 \mathrm{mmol}$ ) and stirred for 1 h . Ethyl acetate ( $400 \mathrm{~cm}^{3}$ ) and water ( $200 \mathrm{~cm}^{3}$ ) were added, followed by $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$ ( $400 \mathrm{~cm}^{3}$ ). After separation the organic layer was shaken vigorously with $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(2 \times 200 \mathrm{~cm}^{3}\right)$. Ethyl acetate was added to the combined $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ extracts followed by addition of $5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(80 \mathrm{~cm}^{3}\right)$ and sodium chloride ( 100 g ). The aq. layer was extracted with a further portion of ethyl acetate, and the combined extracts were dried and evaporated. The residue was triturated with diethyl ether, and the resulting solid was collected by filtration, washed with diethyl ether and dried to give the product $15(13.6 \mathrm{~g}, 68 \%)$, m.p. $200-205^{\circ} \mathrm{C}$ (decomp.) (from water) [lit., ${ }^{11} \quad 205-210^{\circ} \mathrm{C}$ (decomp.)] (Found: $\mathrm{C}, 33.9 ; \mathrm{H}, 2.2 ; \mathrm{N}, 11.1$. Calc. for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 33.8 ; \mathrm{H}, 2.0 ; \mathrm{N}, 11.3 \%$ ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1720$, 1705 and $1677 ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 4.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 8.46(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$ and $13.01(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}$ and OH$)$.
(Z)-2-(2-Chloroacetamidothiazol-4-yl)-2-(cyclobuiyloxyimino) acetic acid 19. A solution of $N$-cyclobutyloxyphthalimide $17(4.95 \mathrm{~g}, 22.8 \mathrm{mmol})$ in methylene dichloride ( $100 \mathrm{~cm}^{3}$ ) was treated with hydrazine hydrate $(2.28 \mathrm{~g}, 45.6 \mathrm{mmol})$ in methanol ( $10 \mathrm{~cm}^{3}$ ). After $1 \mathrm{~h}, 5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ ammonium hydroxide ( $100 \mathrm{~cm}^{3}$ ) was added. The aq. phase was extracted with more methylene dichloride, and the combined organic phases were evaporated to leave cyclobutyloxyamine 18.

The oxyamine 18 was taken up in THF ( $100 \mathrm{~cm}^{3}$ ) and the solution was added to a solution of (2-chloroacetamidothiazol-4-yl)glyoxylic acid $15(5.67 \mathrm{~g}, 22.8 \mathrm{mmol})$ in THF ( $100 \mathrm{~cm}^{3}$ )water $\left(100 \mathrm{~cm}^{3}\right)$. The pH of the mixture was maintained at 5.0 by the addition of $2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$. After 1.5 h the mixture was diluted with water $\left(100 \mathrm{~cm}^{3}\right)$, the pH was adjusted to 7.0 and the THF was evaporated off. The residual aq. solution was washed with ethyl acetate. Further ethyl acetate was added and the pH was adjusted to $2.5\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\right)$. The aq. layer was extracted a further four times with ethyl acetate, and the combined extracts were dried and evaporated. Recrystallisation from ethyl acetate gave the title product 19 ( $5.8 \mathrm{~g}, 80 \%$ ), m.p. $187^{\circ} \mathrm{C}$ (decomp.) (Found: C, 41.7; H, 3.7; N, 13.1; Cl, 11.2; S,
9.85. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{ClO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 41.6 ; \mathrm{H}, 3.8 ; \mathrm{N}, 13.2 ; \mathrm{Cl}, 11.2$; $\mathrm{S}, 10.1 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 1713,1576$ and $1543 ; \delta\left(\mathrm{CDCl}_{3}-\right.$ $\left.\mathrm{CD}_{3} \mathrm{OD} 2: 1\right) 1.6-2.4\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2} \mathrm{CO}\right)$, $4.82(1 \mathrm{H}$, quintet, $J 7, \mathrm{CH})$ and $7.36(1 \mathrm{H}$, s, thiazole $5-\mathrm{H})$.

Preparation of Ethyl (Z)-2-(1-Methylcyclopropyloxyimino)-3oxobutyrate 61 and Ethyl (Z)-2-Cyclopropyloxyimino-3-oxobutyrate ${ }^{17}$ 6d.-2-Bromo-1-(t-butyldimethylsiloxy)propane 22. A solution of 2-bromopropionyl chloride $21\left(10 \mathrm{~cm}^{3}, 0.10 \mathrm{~mol}\right)$ in diethyl ether ( $30 \mathrm{~cm}^{3}$ ) was added dropwise to a suspension of lithium aluminium hydride ( $3.8 \mathrm{~g}, 0.10 \mathrm{~mol}$ ) in diethyl ether ( 250 $\mathrm{cm}^{3}$ ) during 1 h at $0^{\circ} \mathrm{C}$. After being stirred for a further 0.5 h , the mixture was heated to reflux, cooled, and water ( $3.8 \mathrm{~cm}^{3}$ ), $15 \%$ aq. $\mathrm{NaOH}\left(3.8 \mathrm{~cm}^{3}\right)$ and water ( $11.4 \mathrm{~cm}^{3}$ ) were sequentially added. Filtration and evaporation gave a liquid, which was distilled to afford 2-bromopropyl alcohol ( $7.2 \mathrm{~g}, 52 \%$ ), b.p. 73$75^{\circ} \mathrm{C}$ at 30 mmHg (lit., ${ }^{22} 62.8-64.0^{\circ} \mathrm{C}$ at 24 mmHg ).

4-Dimethylaminopyridine (DMAP) ( $0.63 \mathrm{~g}, 5.1 \mathrm{mmol}$ ) was added to a mixture of 2-bromopropyl alcohol ( $7.1 \mathrm{~g}, 51 \mathrm{mmol}$ ), t-butyldimethylsilyl chloride $(9.24 \mathrm{~g}, 61.3 \mathrm{mmol})$ and triethylamine ( $10.7 \mathrm{~cm}^{3}, 76.8 \mathrm{mmol}$ ) in methylene dichloride ( 100 $\mathrm{cm}^{3}$ ) at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 18 h the mixture was washed successively with dil. HCl , saturated aq. $\mathrm{NaHCO}_{3}$ and water, dried, and evaporated. The residue was distilled to give the title compound $22(12.6 \mathrm{~g}, 97 \%)$, b.p. $102-106^{\circ} \mathrm{C}$ at $25 \mathrm{mmHg} ; \delta\left(\mathrm{CCl}_{4}\right) 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.87$ ( $9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}$ ), 1.63 ( $3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{MeCH}$ ) and 3.7 ( $3 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCH}_{2}$ ).

Ethyl (Z)-2-\{[1-(t-Butyldimethylsiloxy)propan-2-yl]oxyimino \}-3-oxobutyrate 23. A mixture of bromide $22(1.76 \mathrm{~g}, 6.92$ mmol), ethyl ( $Z$ )-2-hydroxyimino-3-oxobutyrate $5(1.0 \mathrm{~g}, 6.29$ mmol ), potassium carbonate ( $1.13 \mathrm{~g}, 8.2 \mathrm{mmol}$ ) and DMSO (5 $\mathrm{cm}^{3}$ ) was stirred at room temperature for 16 h , then partitioned between ethyl acetate and water. The organic phase was washed successively with water and brine, dried and evaporated. The residue was purified by chromatography to give the title compound $23(1.07 \mathrm{~g}, 51 \%)$ as an oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2940,1740$ and $1695 ; \delta\left(\mathrm{CDCl}_{3}\right) 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}\right)$, 1.31 ( $3 \mathrm{H}, \mathrm{d}, J 6.3, M e \mathrm{CH}$ ), $1.32\left(3 \mathrm{H}, \mathrm{t}, J 7, M e \mathrm{CH}_{2}\right), 2.39(3 \mathrm{H}$, $\mathrm{s}, \mathrm{MeCO}), 3.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSi}\right), 4.33\left(2 \mathrm{H}, \mathrm{dq}, \mathrm{MeCH}_{2}\right)$ and $4.47(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}) ; m / z\left(\mathrm{CI}\right.$, isobutane) $332\left(\mathrm{MH}^{+}\right)$.

Ethyl (Z)-2-[(1-bromopropan-2-yl)oxyimino]-3-oxobutyrate 24. Bromine ( $0.52 \mathrm{~cm}^{3}, 10.0 \mathrm{mmol}$ ) was added dropwise to a solution of triphenylphosphine $(2.66 \mathrm{~g}, 10.1 \mathrm{mmol})$ in chloroform ( $30 \mathrm{~cm}^{3}$ ) at $10^{\circ} \mathrm{C}$. To the resulting suspension of triphenylphosphine dibromide was added a solution of the silyl ether $23(3.05 \mathrm{~g}, 9.21 \mathrm{mmol})$ in chloroform ( $10 \mathrm{~cm}^{3}$ ). After 10 min at room temperature and 30 min at reflux, the solvent was evaporated off and the residue was chromatographed to give the title compound $24(2.12 \mathrm{~g}, 82 \%)$ as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1740$ and 1695; $\delta\left(\mathrm{CDCl}_{3}\right) 1.34\left(3 \mathrm{H}, \mathrm{t}, J 7.1, M e \mathrm{CH}_{2}\right), 1.46(3 \mathrm{H}, \mathrm{d}$, $J 6.4, \mathrm{MeCH}$ ), 2.41 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$ ), $3.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.36$ ( $2 \mathrm{H}, \mathrm{q}, \mathrm{MeCH})_{2}$ ) and $4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}) ; m / z(\mathrm{CI}$, isobutane) 282 and $280\left(\mathrm{MH}^{+}\right)$.

Ethyl (Z)-2-[(1-bromopropan-2-yl)oxyimino $]-3,3-$ ethylenedioxybutyrate 26. Oxime $24(1.05 \mathrm{~g}, 3.75 \mathrm{mmol})$, ethylene glycol $(1.9 \mathrm{~g}, 31 \mathrm{mmol})$, toluene- $p$-sulphonic acid (PTSA) monohydrate ( $0.12 \mathrm{~g}, 0.63 \mathrm{mmol}$ ) and benzene ( $20 \mathrm{~cm}^{3}$ ) were heated under reflux with azeotropic removal of water. After four days the mixture was diluted with ethyl acetate, washed successively with water and brine, dried and evaporated. Purification by chromatography gave the acetal $26(1.03 \mathrm{~g}, 85 \%)$ as an oil, $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1735 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.34\left(3 \mathrm{H}, \mathrm{t}, J 7, M e \mathrm{CH}_{2}\right)$, $1.36(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{MeCH}), 1.66(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}) 3.43$ and 3.53 $\left(2 \mathrm{H}, \mathrm{dd}+\mathrm{dd}, J 10.5,6.3\right.$ and $\left.4.4, \mathrm{CH}_{2} \mathrm{Br}\right), 4.02(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.33\left(2 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2}\right)$ and $4.44(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$; $m / z$ (CI, isobutane) 326 and $324\left(\mathrm{MH}^{+}\right)$.

Ethyl (Z)-3,3-Ethylenedioxy-2-(isopropenyloxyimino)butyrate
28. A mixture of potassium t-butoxide ( $0.38 \mathrm{~g}, 3.39 \mathrm{mmol}$ ) in THF ( $25 \mathrm{~cm}^{3}$ ) was added dropwise to a solution of the acetal $26(1.0 \mathrm{~g}, 3.09 \mathrm{mmol})$ in DMSO $\left(9 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 10 min the mixture was poured into ice-water and extracted with ethyl acetate. The extract was washed successively with water and brine, dried and evaporated to give the title product $28(0.714 \mathrm{~g}, 95 \%)$ as an oil (Found: $\mathbf{M}^{+}$, 243.1107. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires $\mathrm{M}, 243.1107$ ); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1730 and 1650 ; $\delta\left(\mathrm{CDCl}_{3}\right) 1.35(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{MeCH} 2), 1.70$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}), 1.86\left(3 \mathrm{H}, \mathrm{d}, J 0.9, \mathrm{MeC}=\mathrm{CH}_{2}\right), 4.03(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.08(1 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}), 4.36\left(2 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2}\right)$ and $4.60(1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{C}=\mathrm{CH})$.
Ethyl (Z)-3,3-[ethylenedioxy-2-(1-methylcyclopropyloxyimino) butyrate] 30. A solution of diethylzinc $\left(0.603 \mathrm{~cm}^{3}, 5.88\right.$ $\mathrm{mmol})$ in cyclohexane $\left(1.9 \mathrm{~cm}^{3}\right)$ was added to a solution of the isopropenyl oxime $28(0.714 \mathrm{~g}, 2.94 \mathrm{mmol})$ in benzene $\left(15 \mathrm{~cm}^{3}\right)$, followed by a solution of methylene diiodide $\left(0.51 \mathrm{~cm}^{3}, 6.33\right.$ mmol ) in benzene ( $5 \mathrm{~cm}^{3}$ ) during 15 min . After 1 h at room temperature the mixture was partitioned between ethyl acetate and water, and acidified with dil. HCl . The organic phase was washed successively with water and brine, dried and evaporated. Chromatography gave the oxime 30 ( $0.55 \mathrm{~g}, 73 \%$ ) as an oil, $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1730 ; \delta\left(\mathrm{CDCl}_{3}\right) 0.53(2 \mathrm{H}, \mathrm{m}$, cyclopropyl CH), $0.92(2 \mathrm{H}, \mathrm{m}$, cyclopropyl CH), $1.30(3 \mathrm{H}, \mathrm{t}$, $J 7.1, \mathrm{MeCH}_{2}$ ), $1.49\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}\right)$, 1.65 ( $\mathbf{3} \mathbf{~ H , ~ s , ~ 3 - M e ) , ~} 4.00$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and $4.29\left(2 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2}\right) ; m / z(\mathrm{CI}$, isobutane) $258\left(\mathrm{MH}^{+}\right)$.
Ethyl (Z)-2-(1-methylcyclopropyloxyimino)-3-oxobutyrate 61. TFA $\left(9 \mathrm{~cm}^{3}\right)$ was added to a solution of acetal $30(0.55 \mathrm{~g}, 2.14$ $\mathrm{mmol})$ in THF $\left(9 \mathrm{~cm}^{3}\right)$-water $\left(0.2 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 16 h at room temperature; after evaporation the residue was dissolved in ethyl acetate and washed successively with saturated aq. sodium hydrogen carbonate, water and brine, dried and evaporated. Chromatography gave the oxime 61 ( $0.315 \mathrm{~g}, 69 \%$ ) as an oil, $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1745$ and 1695 ; $\delta\left(\mathrm{CDCl}_{3}\right) 0.64(2 \mathrm{H}, \mathrm{m}$, cyclopropyl CH$), 1.02(2 \mathrm{H}, \mathrm{m}$, cyclopropyl CH), $1.32\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{MeCH}_{2}\right), 1.58(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC})$, $2.42(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me})$ and $4.33(2 \mathrm{H}, \mathrm{q}, \mathrm{MeCH} 2)$.
Ethyl (Z)-2-(2-bromoethoxyimino)-3-oxobutyrate 25. A mixture of oxime $5(10 \mathrm{~g}, 62.9 \mathrm{mmol})$, DMF ( $140 \mathrm{~cm}^{3}$ ), potassium carbonate ( $5.2 \mathrm{~g}, 37.7 \mathrm{mmol}$ ) and ethylene dibromide $\left(40 \mathrm{~cm}^{3}\right.$, 464 mmol ) was stirred at room temperature for 19 h , then poured into water and extracted with ethyl acetate. The extract was washed with brine, dried and evaporated. Chromatography gave the oxime 25 ( $12.5 \mathrm{~g}, 75 \%$ ) as an oil (Found: $\mathrm{M}^{+}, 264.9963$. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{BrNO}_{4}$ requires $\mathrm{M}, 264.9950$ ); $\mathrm{v}_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1740$ and 1690; $\delta\left(\mathrm{CDCl}_{3}\right) 1.32\left(3 \mathrm{H}, \mathrm{t}, J 7, M e \mathrm{CH}_{2}\right), 2.38(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeCO}), 3.54\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right), 4.30(2 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right)$ and $4.48(2 \mathrm{H}, \mathrm{q}, \mathrm{MeCH} 2)$.

Ethyl (Z)-2-(2-bromoethoxyimino)-3,3-ethylenedioxybutyrate 27. Oxime $25(2.0 \mathrm{~g}, 7.5 \mathrm{mmol})$, ethylene glycol $\left(1.5 \mathrm{~cm}^{3}, 26\right.$ mmol ), PTSA monohydrate ( $0.143 \mathrm{~g}, 0.75 \mathrm{mmol}$ ) and benzene ( $20 \mathrm{~cm}^{3}$ ) were heated under reflux with azeotropic removal of water. After 28 h the mixture was diluted with ethyl acetate, washed successively with water, saturated aq. sodium hydrogen carbonate and brine, dried and evaporated. Purification by chromatography gave the acetal 27 as an oil ( $2.0 \mathrm{~g}, 86 \%$ ) (Found: $\mathrm{MH}^{+}$, 310.0290. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{BrNO}_{5}$ requires $\mathrm{m} / \mathrm{z}$, 310.0290); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.30(3 \mathrm{H}, \mathrm{t}, J 7$, MeCH ), $1.61(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.46\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right), 3.97$ $\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.27\left(2 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2}\right)$ and $4.31(2 \mathrm{H}, \mathrm{t}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ ).
Ethyl (Z)-3,3-ethylenedioxy-2-vinyloxyiminobutyrate 29. A mixture of potassium t-butoxide ( $0.61 \mathrm{~g}, 5.4 \mathrm{mmol}$ ) in THF ( 30 $\mathrm{cm}^{3}$ ) was added dropwise to a solution of the acetal $27(1.4 \mathrm{~g}, 4.5$ $\mathrm{mmol})$ in DMSO $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . Ice-water was added and the resulting mixture was extracted twice with diethyl ether. The combined extracts
were washed successively with water and brine, dried and evaporated. Chromatography gave the unstable vinyl oxime 29 as an oil ( $0.706 \mathrm{~g}, 69 \%$ ) (Found: $\mathrm{MH}^{+}, 230.1035 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{5}$ requires $m / z, 230.1028)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730,1650,1640$ and $1620 ; \delta\left(\mathrm{CDCl}_{3}\right) 1.33(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{MeCH}), 1.65(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.99$ ( $4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ ), $4.18(1 \mathrm{H}, \mathrm{dd}, J 7$ and $2, \mathrm{OCH}=\mathrm{CH} \mathrm{cis}$ ), $4.32\left(2 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2}\right), 4.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14, \mathrm{OCH}=\mathrm{CH}$ trans $)$ and $6.83\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{OCH}=\mathrm{CH}_{2}\right)$.

Ethyl (Z)-2-cyclopropyloxyimino-3-oxobutyrate 6d. A solution of diethylzinc ( $0.41 \mathrm{~cm}^{3}, 4 \mathrm{mmol}$ ) in cyclohexane $\left(1.3 \mathrm{~cm}^{3}, 4\right.$ $\mathrm{mmol})$ was added to a solution of the vinyl oxime $29(0.50 \mathrm{~g}, 2.2$ mmol ) in benzene ( $10 \mathrm{~cm}^{3}$ ), followed by dropwise addition of a solution of methylene diiodide ( $0.35 \mathrm{~cm}^{3}, 4.4 \mathrm{mmol}$ ) in benzene $\left(3 \mathrm{~cm}^{3}\right)$ during 15 min . The mixture was stirred for a further 15 min at room temperature, then at $50^{\circ} \mathrm{C}$ for 22 h . The reaction mixture was poured onto water-cyclohexane, acidified with dil. HCl , and the separated organic phase was washed successively with saturated aq. sodium hydrogen carbonate and brine, dried and evaporated. Chromatography gave the cyclopropyl oxime 31.

This compound was dissolved in a mixture of TFA $\left(3 \mathrm{~cm}^{3}\right)$ and water $\left(0.1 \mathrm{~cm}^{3}\right)$ and the solution was stirred for 3 h . After evaporation the residue was dissolved in diethyl ether and the solution was washed successively with saturated sodium hydrogen carbonate and brine, dried and evaporated. Chromatography gave the oxime $6 d$ as an oil ( $0.11 \mathrm{~g}, 25 \%$ ) (Found: $\mathrm{MH}^{+}, 200.0921 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{4}$ requires M, 200.0923); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730$ and $1690 ; \delta\left(\mathrm{CDCl}_{3}\right) 0.65-0.95(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}$ ), $1.32(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{MeCH} 2), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.2(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH})$ and $4.33\left(2 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2}\right)$.

MIC.-MIC determinations were carried out by serial dilution using DST agar (Oxoid) with inoculum of $10^{6}$ colonyforming units. MICs were determined after incubation at $37^{\circ} \mathrm{C}$ for 18 h .
$\beta$-Lactamase Stability Test.-Compounds were made up to a final concentration of $100 \mu \mathrm{~g} \mathrm{~cm}^{-3}$ in $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ phosphate buffer at pH 7 and the solutions were warmed to $37^{\circ} \mathrm{C}$ before addition of a concentrated, cell-free enzyme preparation derived from S. aureus MB9, or H. influenzae NEMC1. Degradation of the compounds were monitored by HPLC and the results expressed as half-lives in Table 1.

Human Serum Binding.-Compounds were made up to a final concentration of $50 \mu \mathrm{~g} \mathrm{~cm}{ }^{-3}$ in pooled human serum and left at room temperature for 15 min before being centrifuged in an Amicon Micropartition system. The ultrafiltrate was then assayed using a hole-in-plate bioassay.

## References

1 P. C. A. Chapman, A. J. Eglington, R. L. Elliott, B. C. Gasson, J. D. Hinks, J. Lowther, D. J. Merrikin, M. J. Pearson and R. J. Ponsford, presented in part at the 29th Interscience Conference on Antimicrobial Agents and Chemotherapy, Houston, Texas, September 1989; Eur. Pat. Appl. 0210 815, 1988 (Chem. Abstr., 107, 217 358K).
2 G. N. Rolinson and R. Sutherland, Adv. Pharmacol. Chemother., 1973, 11, 152.
3 W. Dürckheimer, J. Blumbach, R. Lattrell and K. H. Scheunemann, Angew. Chem., Int. Ed. Engl., 1985, 24, 180.
4 N. A. C. Curtis, D. Orr, G. W. Ross and M. G. Boulton, Antimicrob. Agents Chemother., 1979, 16, 533; R. Singh, M. P. Singh and R. G. Micetich, J. Antibiot., 1989, 42, 637.
5 M. Mandel, L. Novák, M. Rajšner, J. Holubek and V. Holá, Collect. Czech. Chem. Commun., 1989, 54, 1734; Czech. Pats. 242018,1987 and 250 561, 1988 (Chem. abstr., 109, 73238n and 112, 118533K).
6 H. Adkins and E. W. Reeve, J. Am. Chem. Soc., 1938, 60, 1328; Br. Pat. 2027 692, 1980, Chem. Abstr., 94, 15750j.
7 R. Lattrell, J. Blumbach, W. Duerckheimer, H.-W. Fehlhaber,
K. Fleischmann, R. Kirrstetter, B. Mencke, K.-H. Scheunemann, E. Schrinner, W. Schwab, K. Seeger, G. Seibert and M. Wieduwilt, J. Antibiot., 1988, 41, 1374.

8 O. Mitsunobu, Synthesis, 1981, 1
9 E. Grochowski and J. Jurczak, Synthesis, 1976, 682.
10 M. Ochiai, A. Morimoto, T. Miyawaki, Y. Matsushita, T. Okada, H. Natsugari and M. Kida, J. Antibiot., 1981, 34, 171.

11 S. Kishimoto, M. Sendai, M. Tomimoto, S. Hashiguchi, T. Matsuo and M. Ochiai, Chem. Pharm. Bull., 1984, 32, 2646.
12 R. B. Moffett, A. Robert, E. L. Schumann and L. A. Paquette, J. Heterocycl. Chem., 1979, 16, 1459.

13 S. Kishimoto, M. Sendai, S. Hashiguchi, M. Tomimoto, Y. Satoh, T. Matsuo, M. Kondo and M. Ochiai, J. Antibiot., 1983, 36, 1421.

14 O. L. Brady, F. P. Dunn and R. F. Goldstein, J. Chem. Soc., 1926, 2386; O. L. Brady and L. Klein, J. Chem. Soc., 1927, 874.
15 J. M. Aizpurua, F. P. Cossio and C. Paloma, J. Org. Chem., 1986, 51, 4941.

16 J. Furukawa, N. Kawabata and J. Nishimura, Tetrahedron, 1968, 24, 53.

17 Eur. Pat., 192 210, 1986 (Chem. Abstr., 106, 84273j).
18 E. J. Catherall, N. R. Eaton, G. K. Hill, D. J. Merrikin and L. Mizen, presented at the 29th Interscience Conference on Antimicrobial Agents and Chemotherapy, Houston, Texas, September 1989.
19 U.S. Pat. 3948 971, 1976 (Chem. Abstr., 85, 33395r); Y. Leroux, Bull. Soc. Chim. Fr., 1968, 359; G. W. Cannon, R. C. Ellis and J. R. Leal, Org. Synth., 1963, Coll. Vol. 4, 597.
20 Br. Pat. 2031 411, 1980 (Chem. Abstr., 93, 717935r).
21 M. L. Moore and F. S. Crossley, Org. Synth., 1955, Coll. Vol. 3, 599.
22 C. A. Stewart and C. A. VanderWerf, J. Am. Chem. Soc., 1954, 76, 1259.

Paper 0/04762G
Received 23rd October 1990
Accepted 26th November 1990


[^0]:    * Purchased from Lonza Ltd, Basle.

